• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.04 seconds

Machine Learning based Fall Detection (기계학습 기반의 낙상 검출)

  • Kim, InKyung;Kim, DaeHee;Heo, Seongsil;Lee, JaeKoo
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.547-550
    • /
    • 2020
  • 노인인구의 급증에 따라 노인 건강에 대한 관심이 증가하였고 노인 낙상을 발견하는 방법에 대한 관심도 함께 대두되기 시작하였다. 낙상 사고의 경우 낙상을 일으킨 원인보다 낙상이 제때 감지되지 않아 발생하는 이후의 상황이 더욱 심각한 결과를 초래한다. 따라서 낙상이 발생했을 때, 바로 낙상을 감지할 수 있는 시스템 구축이 필요하다. 다양한 낙상 검출을 위한 방법이 존재하지만 그 중 착용이 쉽고 원격지에서 관찰 및 관리가 가능한 웨어러블(Wearable) 기기의 센서 데이터를 사용한 낙상 검출을 진행하였다. 본 논문에서는 머신 러닝 모델들을 사용해서 낙상 검출 성능 비교 및 적절한 모델을 제안한다. 기계 학습 기반의 모델인 결정 트리(Decision Tree), 랜덤 포래스트(Random Forest), SVM(Support Vector Machine)을 사용하여 실제 측정된 데이터에 낙상 검출 학습 능력을 정량화하였다. 또한, 모델의 입력 값에 적용한 데이터 분할, 전처리 및 특징 추출 방법을 통해서 효율적인 낙상 검출을 위한 기계학습 관점에서의 타당성을 판단하고자 한다.

A Study on Edge Detection using Adaptive Morphology Wavelet in YIQ Color model (YIQ 컬러 모델에서 적응적 형태학 웨이브렛 이용한 에지 검출 연구)

  • 백영현;문성룡
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.249-252
    • /
    • 2003
  • 본 논문은 컬러 영상을 명암도에 따른 공간적 객체 분할인 YIQ 모델을 사용하여 객체 분할한 영상의 임계값에 따른 적응적 형태학을 이용하여 영상의 경계면을 레벨 업시킨 후, 이를 웨이브렛에 적용하여 최적의 에지를 검출하였다. 또한, 흑백 영상보다 더 많은 더 정보를 가진컬러 영상을 사용하여, 기존의 영상 에지 검출 알고리즘인 Sobel 에지 검출과 다른 웨이브렛기저 계수를 적용한 에지 검출 방법과 비교하고, 제안된 알고리즘이 기존의 다른 에지 검출보다 우수함을 확인하였다. 특히 에지와 에지의 부분이 가까울 때 정확한 에지를 검출하였으며, 완만한 곡선을 가지고 있는 부분에서 더 우수한 결과 에지를 얻을 수 있음을 확인하였다.

  • PDF

Semantic Segmentation of Clouds Using Multi-Branch Neural Architecture Search (멀티 브랜치 네트워크 구조 탐색을 사용한 구름 영역 분할)

  • Chi Yoon Jeong;Kyeong Deok Moon;Mooseop Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.143-156
    • /
    • 2023
  • To precisely and reliably analyze the contents of the satellite imagery, recognizing the clouds which are the obstacle to gathering the useful information is essential. In recent times, deep learning yielded satisfactory results in various tasks, so many studies using deep neural networks have been conducted to improve the performance of cloud detection. However, existing methods for cloud detection have the limitation on increasing the performance due to the adopting the network models for semantic image segmentation without modification. To tackle this problem, we introduced the multi-branch neural architecture search to find optimal network structure for cloud detection. Additionally, the proposed method adopts the soft intersection over union (IoU) as loss function to mitigate the disagreement between the loss function and the evaluation metric and uses the various data augmentation methods. The experiments are conducted using the cloud detection dataset acquired by Arirang-3/3A satellite imagery. The experimental results showed that the proposed network which are searched network architecture using cloud dataset is 4% higher than the existing network model which are searched network structure using urban street scenes with regard to the IoU. Also, the experimental results showed that the soft IoU exhibits the best performance on cloud detection among the various loss functions. When comparing the proposed method with the state-of-the-art (SOTA) models in the field of semantic segmentation, the proposed method showed better performance than the SOTA models with regard to the mean IoU and overall accuracy.

Robust Detection Deep Learning Model in the Various Exterior Wall Cracks (다양한 외벽 균열에 강인한 딥러닝 검출 모델 개발)

  • Kim, Gyeong-Yeong;Lee, Ho-Ryeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.53-56
    • /
    • 2021
  • 국내 산업화가 들어선 후 산업화 당시 지었던 낙후된 건물의 증가에 따라 구조물의 손상 조사 및 검사 방법의 수요가 늘어나고 있다. 일반적으로 구조물의 손상은 전문 검사원이 현장에서 직접 측량도구와 시각적인 방식으로 검사한다. 그러나 전문 검사원들이 직접 조사하는 수고에 비해 균열을 검사하는 방식 자체가 단순하고, 일반 사람이 검사하기에는 객관성이 떨어지는 한계가 있어 균열을 자동적으로 검출함으로써 객관성과 편의성을 보장할 기술이 필요하다. 본 연구에서는 이미지 기반으로 다양한 환경에서의 외벽 균열을 검출할 수 있는 딥러닝 모델 개발을 소개한다. 균열 검출을 위해 다양한 외벽 균열 관련 데이터셋을 확보 및 구축하고 각 데이터셋의 검출 정보를 보완할 반자동(semi-auto) 라벨링 작업을 수행하였다. 두 번째로 기존 높은 검출 성능을 보였던 모델들을 선정 및 비교하여 YOLO v5 모델을 최종적으로 선정하였고, 도메인이 각각 다른 데이터셋에 대한 교차 학습을 통해 각 데이터셋의 mAP의 편차가 31%에서 11%로 좁히는 작업을 수행하였다. 이를 통해 실제 상황에서의 균열 영상에서 균열을 검출할 수 있는 측량 시스템을 개발함으로써 실질적인 검사의 도구로 활용될 수 있길 기대한다.

  • PDF

Fixed-Point Modeling and Performance Analysis of a Face Recognition Algorithm For Hardware Design (SoC 하드웨어 설계를 위한 얼굴 인식 알고리즘의 고정 소수점 모델 구현 및 성능 분석)

  • Kim, Young-Jin;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.102-112
    • /
    • 2007
  • This paper includes an analysis of face recognition algorithm to design hardware and presents fixed point model in accordance with it. Face recognition algorithm detects the positions of face and eyes to make use of their feature data to detect and verify human faces. It distinguishes a particular user by means of comparing them with registered face features. To implement the face recognition algorithm into hardware, we developed its fixed point model by analyzing face feature parameters, face acquisition data, and feature detection parameters and operation structure.

Implementation of Deep Learning-Based Vehicle Model and License Plate Recognition System (딥러닝 기반 자동차 모델 및 번호판 인식 시스템 구현)

  • Ham, Kyoung-Youn;Kang, Gil-Nam;Lee, Jang-Hyeon;Lee, Jung-Woo;Park, Dong-Hoon;Ryoo, Myung-Chun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.465-466
    • /
    • 2022
  • 본 논문에서는 딥러닝 영상인식 기술을 활용한 객체검출 모델인 YOLOv4를 활용하여 차량의 모델과 번호판인식 시스템을 제안한다. 본 논문에서 제안하는 시스템은 실시간 영상처리기술인 YOLOv4를 사용하여 차량모델 인식과 번호판 영역 검출을 하고, CNN(Convolutional Neural Network)알고리즘을 이용하여 번호판의 글자와 숫자를 인식한다. 이러한 방법을 이용한다면 카메라 1대로 차량의 모델 인식과 번호판 인식이 가능하다. 차량모델 인식과 번호판 영역 검출에는 실제 데이터를 사용하였으며, 차량 번호판 문자 인식의 경우 실제 데이터와 가상 데이터를 사용하였다. 차량 모델 인식 정확도는 92.3%, 번호판 검출 98.9%, 번호판 문자 인식 94.2%를 기록하였다.

  • PDF

Design of a Statistical Model Based Voice Activity Detector (통계적 모델에 근거한 음성 검출기의 설계)

  • 손종서
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.465-469
    • /
    • 1998
  • 가변 전송율 음성 부호화기를 위한 음성 검출기를 통계적 모델을 적용하여 설계한다. 제안된 음성 검출기는 음성 파라미터를 decision-directed 방식으로 추정함으로써 LRT를 이용하여 동작 특성이 우수한 판정 규칙을 유도한다. 또한 음성 발생 사건들을 1차의 Markov process 로 모델링 함으로써 과거의 관찰들을 현재 프레임의 음성 검출 과정에서 고려할 수 있는 행오버 알고리즘을 개발한다. 개발된 음성 검출기는 고려된 실험환경에서 ITU-T 표준인 G.729 Annex B 음성 검출기보다 맹 우수한 성능을 나타내었다.

  • PDF

Real-time Face Tracking Using Multi Color Model and Face Gradient Correction Algorithm (다중 컬러 모델을 이용한 실시간 얼굴 추적 및 기울기 보정 알고리즘)

  • 석영수;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.488-491
    • /
    • 2003
  • 본 논문에서는 실시간 CCD 카메라 입력 영상으로부터 다중 컬러 정보를 이용하여 얼굴 영역을 검출 및 추적하고 기울어진 얼굴을 보정하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 획득된 RGB 영상에서 YCbCr컬러 모델과 YIQ컬러 모델로 변환한 후 Cr성분과 I성분을 추출하여 얼굴 피부색을 검출, 얼굴 영역 추출에 사용하였다. 또한 추출된 얼굴 후보 영역에서 수평, 수직 투영(Projection)정보로부터 최종 얼굴 영역으로 검출한 다음 검출된 얼굴 중심 좌표와 이전에 검출된 얼굴 중심 좌표 값을 유클리드언 거리로 얼굴을 추적하였으며 검출된 얼굴로부터 레이블링(Labeling)기법으로 눈 특징자를 검출, 눈의 기울기 각도를 보정함으로써 얼굴 기울기를 보정하였다. 제안한 얼굴 추적 및 기울기 보정 알고리즘을 사용하여 실험한 결과 다중 색상 정보를 사용함으로써 주위환경 변화에 강인하게 실시간 얼굴 영역 김출 및 추적이 가능하였고, 기울어진 얼굴 영상을 자동 보정함으로써 인식에 용이하였다.

  • PDF

Fire detection system using HSV, YCbCr Combined color information (HSV, YCbCr 컬러 모델의 복합 색상정보룰 이용한 화재 검출 시스템)

  • Jeong, Hee-yoon;Cehio, Kyung-joo
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.1010-1012
    • /
    • 2017
  • 본 논문에서는 HSV, YCbCr 컬러 모델의 색상정보를 통한 화재 검출 알고리즘을 제안한다. 첫 번째 단계에서는 영상의 변화를 감지하기 위해서 입력된 영상으로부터 평균배경영상을 계산하여 전경영상을 분리한다. 그리고 차영상을 이용해 움직임을 인식하여 컬러 모델 색상정보를 비교할 영역을 구한다. 전경영상의 구해진 영역에서 컬러모델의 복합 색상정보를 이용하여 화재 영역을 검출한다.

Study on the Selection Criteria of 3D Collision Detection Model (3D 충돌 검출 모델의 선정 기준에 관한 연구)

  • Kang, Yun-Mi;Park, Young-B.
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.253-259
    • /
    • 2003
  • In a good 3D engine, objects interactions are similar to those of real-world. Collision is one of the interactions. It includes whether collision took place or not, where collision took placed, and reaction after collision took place. More precise collision detection needs more time. If there exist required precision, detection time can be controlled by choosing appropriate detection model. Therefore, we need a selection mechanism for the collision detection with respect to required precision and detection time. In this paper, a collision detection model with seven different precision levels is examined. And relationship between detection time and precision is analyzed. Consequently, we propose a selection mechanism for collision detection model.

  • PDF