• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.036 seconds

Temporal Analysis of Agricultural Reservoir Water Surface Area using Remote Sensing and CNN (위성영상 및 CNN을 활용한 소규모 농업용 저수지의 수표면적 시계열 분석)

  • Yang, Mi-Hye;Nam, Won-Ho;Lee, Hee-Jin;Kim, Taegon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.118-118
    • /
    • 2021
  • 최근 지구 온난화 현상으로 인한 기후변화로 이상기후 현상이 발생하고 있으며 이로 인해 장기적으로 폭염의 빈도 및 강도 상승에 따른 가뭄 피해 우려가 증가하고 있다. 농업 가뭄은 강수량 부족, 토양 수분 부족, 저수량 부족 등 농업분야에 영향을 주는 인자들과 관련되어 있어 농작물 생육 및 수확량 감소를 야기한다. 우리나라는 논농사가 주를 이루고 있어 국내 농업 가뭄은 주수원공인 농업용 저수지의 가용저수용량으로 판단 가능하다. 따라서 안정적인 농업용수 공급을 위해 수리시설물의 모니터링, 공급량 등의 분석이 이루어져야 하며, 농업 가뭄에 대비하기 위해 농업용 저수지의 가용저수용량 파악이 필요하다. 수자원 분야에서 지점자료의 시·공간적 한계점을 보완하기 위해 인공위성 자료를 활용한 연구가 활발히 이루어지고 있으며, 본 연구에서는 위성영상 자료 및 딥러닝 기반 알고리즘을 적용하여 농업용 저수지 수표면 탐지 및 시계열 분석을 목적으로 한다. 위성영상 자료는 5일 주기 및 10 m 공간해상도를 가진 Sentinel-2 위성영상 자료를 활용하고자 하였으며, 딥러닝에 적용하기 위하여 100장 이상의 영상 이미지를 구축하였다. 딥러닝 기반 알고리즘으로는 Convolutional Neural Network (CNN)을 활용하였으며, CNN은 주로 이미지 분류나 객체 검출 문제를 해결하기 위해 제안된 모델로 최근 픽셀 단위로 분류가 가능한 알고리즘이 개발되어 높은 정확도의 수표면 탐지가 가능할 것으로 판단된다. 따라서 본 연구에서는 CNN 기반 수표면 탐지 알고리즘을 개발하여 Sentinel-2 영상 기준 경기도 안성시를 대상으로 소규모 농업용 저수지의 수표면적에 대한 시계열 데이터를 분석하고자 한다.

  • PDF

Infrastructure Anomaly Analysis for Data-center Failure Prevention: Based on RRCF and Prophet Ensemble Analysis (데이터센터 장애 예방을 위한 인프라 이상징후 분석: RRCF와 Prophet Ensemble 분석 기반)

  • Hyun-Jong Kim;Sung-Keun Kim;Byoung-Whan Chun;Kyong-Bog, Jin;Seung-Jeong Yang
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.113-124
    • /
    • 2022
  • Various methods using machine learning and big data have been applied to prevent failures in Data Centers. However, there are many limitations to referencing individual equipment-based performance indicators or to being practically utilized as an approach that does not consider the infrastructure operating environment. In this study, the performance indicators of individual infrastructure equipment are integrated monitoring and the performance indicators of various equipment are segmented and graded to make a single numerical value. Data pre-processing based on experience in infrastructure operation. And an ensemble of RRCF (Robust Random Cut Forest) analysis and Prophet analysis model led to reliable analysis results in detecting anomalies. A failure analysis system was implemented to facilitate the use of Data Center operators. It can provide a preemptive response to Data Center failures and an appropriate tuning time.

Building-up and Feasibility Study of Image Dataset of Field Construction Equipments for AI Training (인공지능 학습용 토공 건설장비 영상 데이터셋 구축 및 타당성 검토)

  • Na, Jong Ho;Shin, Hyu Soun;Lee, Jae Kang;Yun, Il Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.99-107
    • /
    • 2023
  • Recently, the rate of death and safety accidents at construction sites is the highest among all kinds of industries. In order to apply artificial intelligence technology to construction sites, it is essential to secure a dataset which can be used as a basic training data. In this paper, a number of image data were collected through actual construction site, for which major construction equipment objects mainly operated in civil engineering sites were defined. The optimal training dataset construction was completed by annotation process of about 90,000 image dataset. Reliability of the dataset was verified with the mAP of over 90 % in use of YOLO, a representative model in the field of object detection. The construction equipment training dataset built in this study has been released which is currently available on the public data portal of the Ministry of Public Administration and Security. This dataset is expected to be freely used for any application of object detection technology on construction sites especially in the field of construction safety in the future.

A Review on Analysis of Natural Uranium Isotopes and Their Application (우라늄 동위원소의 분석과 활용에 대한 고찰)

  • Yeongmin Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.547-555
    • /
    • 2023
  • Due to enhanced precision in uranium isotope measurements with MC-ICP-MS, there has been a surge in studies concerning the naturally occurring uranium isotope ratio (238U/235U) and its associated fractionation processes. Several researchers have highlighted that the 238U/235U ratio, previously assumed to be constant, can vary by several per mil depending on different natural fractionation processes. This review paper outlines the uranium isotope values (δ238U) for major terrestrial reservoirs and their variations. It discusses the range of δ238U values and uranium isotope fractionation seen in uranium ore deposits, based on deposit type and ore-forming conditions. In conclusion, this paper emphasizes the importance of studies on uranium ore deposits. Such deposits serve as natural simulation models vital for designing high-level radioactive waste repository sites.

Detecting Foreign Objects in Chest X-Ray Images using Artificial Intelligence (인공 지능을 이용한 흉부 엑스레이 이미지에서의 이물질 검출)

  • Chang-Hwa Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.873-879
    • /
    • 2023
  • This study explored the use of artificial intelligence(AI) to detect foreign bodies in chest X-ray images. Medical imaging, especially chest X-rays, plays a crucial role in diagnosing diseases such as pneumonia and lung cancer. With the increase in imaging tests, AI has become an important tool for efficient and fast diagnosis. However, images can contain foreign objects, including everyday jewelry like buttons and bra wires, which can interfere with accurate readings. In this study, we developed an AI algorithm that accurately identifies these foreign objects and processed the National Institutes of Health chest X-ray dataset based on the YOLOv8 model. The results showed high detection performance with accuracy, precision, recall, and F1-score all close to 0.91. Despite the excellent performance of AI, the study solved the problem that foreign objects in the image can distort the reading results, emphasizing the innovative role of AI in radiology and its reliability based on accuracy, which is essential for clinical implementation.

Data Augmentation Techniques for Deep Learning-Based Medical Image Analyses (딥러닝 기반 의료영상 분석을 위한 데이터 증강 기법)

  • Mingyu Kim;Hyun-Jin Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1290-1304
    • /
    • 2020
  • Medical image analyses have been widely used to differentiate normal and abnormal cases, detect lesions, segment organs, etc. Recently, owing to many breakthroughs in artificial intelligence techniques, medical image analyses based on deep learning have been actively studied. However, sufficient medical data are difficult to obtain, and data imbalance between classes hinder the improvement of deep learning performance. To resolve these issues, various studies have been performed, and data augmentation has been found to be a solution. In this review, we introduce data augmentation techniques, including image processing, such as rotation, shift, and intensity variation methods, generative adversarial network-based method, and image property mixing methods. Subsequently, we examine various deep learning studies based on data augmentation techniques. Finally, we discuss the necessity and future directions of data augmentation.

Implementation of a Micro Drill Bit Foreign Matter Inspection System Using Deep Learning

  • Jung-Sub Kim;Tae-Sung Kim;Gyu-Seok Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.149-156
    • /
    • 2024
  • This paper implemented a drill bit foreign matter inspection system based on the YOLO V3 algorithm and evaluated its performance. The study trained the YOLO V3 model using 600 training data to distinguish between the normal and foreign matter states of the drill bit. The implemented inspection system accurately analyzed the state of the drill bit and effectively detected defects through automatic inspection. The performance evaluation was performed on drill bits used more than 2,000 times, and achieved a recognition rate of 98% for determining whether resharpening was possible. The goal of foreign matter removal in the cleaning process was evaluated as 99.6%, and the automatic inspection system could inspect more than 500 drill bits per hour, which was about 4.3 times faster than the existing manual inspection method and recorded a high accuracy of 99%. These results show that the automated inspection system can dramatically improve inspection speed and accuracy, and can contribute to quality improvement and cost reduction in manufacturing sites. In future studies, it is necessary to develop more efficient and reliable inspection technology through system optimization and performance improvement.

Print-Scan Resilient Curve Watermarking using B-Spline Curve Model and its 2D Mesh-Spectral Transform (B-스프라인 곡선 모델링 및 메시-스펙트럼 변환을 이용한 프린트-스캔에 강인한 곡선 워터마킹)

  • Kim, Ji-Young;Lee, Hae-Yeoun;Im, Dong-Hyuck;Ryu, Seung-Jin;Choi, Jung-Ho;Lee, Heung-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.307-314
    • /
    • 2008
  • This paper presents a new robust watermarking method for curves that uses informed-detection. To embed watermarks, the presented algorithm parameterizes a curve using the B-spline model and acquires the control points of the B-spline model. For these control points, 2D mesh are created by applying Delaunay triangulation and then the mesh spectral analysis is performed to calculate the mesh spectral coefficients where watermark messages are embedded in a spread spectrum way. The watermarked coefficients are inversely transformed to the coordinates of the control points and the watermarked curve is reconstructed by calculating B-spline model with the control points. To detect the embedded watermark, we apply curve matching algorithm using inflection points of curve. After curve registration, we calculate the difference between the original and watermarked mesh spectral coefficients with the same process for embedding. By calculating correlation coefficients between the detected and candidate watermark, we decide which watermark was embedded. The experimental results prove the proposed scheme is more robust than previous watermarking schemes against print-scan process as well as geometrical distortions.

Vessel Tracking Algorithm using Multiple Local Smooth Paths (지역적 다수의 경로를 이용한 혈관 추적 알고리즘)

  • Jeon, Byunghwan;Jang, Yeonggul;Han, Dongjin;Shim, Hackjoon;Park, Hyungbok;Chang, Hyuk-Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.137-145
    • /
    • 2016
  • A novel tracking method is proposed to find coronary artery using high-order curve model in coronary CTA(Computed Tomography Angiography). The proposed method quickly generates numerous artificial trajectories represented by high-order curves, and each trajectory has its own cost. The only high-ranked trajectories, located in the target structure, are selected depending on their costs, and then an optimal curve as the centerline will be found. After tracking, each optimal curve segment is connected, where optimal curve segments share the same point, to a single curve and it is a piecewise smooth curve. We demonstrated the high-order curve is a proper model for classification of coronary artery. The experimental results on public data set sho that the proposed method is comparable at both accuracy and running time to the state-of-the-art methods.

Estimating Gastrointestinal Transition Location Using CNN-based Gastrointestinal Landmark Classifier (CNN 기반 위장관 랜드마크 분류기를 이용한 위장관 교차점 추정)

  • Jang, Hyeon Woong;Lim, Chang Nam;Park, Ye-Suel;Lee, Gwang Jae;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.101-108
    • /
    • 2020
  • Since the performance of deep learning techniques has recently been proven in the field of image processing, there are many attempts to perform classification, analysis, and detection of images using such techniques in various fields. Among them, the expectation of medical image analysis software, which can serve as a medical diagnostic assistant, is increasing. In this study, we are attention to the capsule endoscope image, which has a large data set and takes a long time to judge. The purpose of this paper is to distinguish the gastrointestinal landmarks and to estimate the gastrointestinal transition location that are common to all patients in the judging of capsule endoscopy and take a lot of time. To do this, we designed CNN-based Classifier that can identify gastrointestinal landmarks, and used it to estimate the gastrointestinal transition location by filtering the results. Then, we estimate gastrointestinal transition location about seven of eight patients entered the suspected gastrointestinal transition area. In the case of change from the stomach to the small intestine(pylorus), and change from the small intestine to the large intestine(ileocecal valve), we can check all eight patients were found to be in the suspected gastrointestinal transition area. we can found suspected gastrointestinal transition area in the range of 100 frames, and if the reader plays images at 10 frames per second, the gastrointestinal transition could be found in 10 seconds.