References
- Kim M, Yun J, Cho Y, Shin K, Jang R, Bae HJ, et al. Deep learning in medical imaging. Neurospine 2019;16:657-668 https://doi.org/10.14245/ns.1938396.198
- Kim JH. Imaging informatics: a new horizon for radiology in the era of artificial intelligence, big data, and data science. J Korean Soc Radiol 2019;80:176-201 https://doi.org/10.3348/jksr.2019.80.2.176
- Song KD, Kim M, Do S. The latest trends in the use of deep learning in radiology illustrated through the stages of deep learning algorithm development. J Korean Soc Radiol 2019;80:202-212 https://doi.org/10.3348/jksr.2019.80.2.202
- Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929-1958
- Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018;9:611-629 https://doi.org/10.1007/s13244-018-0639-9
- Do S, Song KD, Chung JW. Basics of deep learning: a radiologist's guide to understanding published radiology articles on deep learning. Korean J Radiol 2020;21:33-41 https://doi.org/10.3348/kjr.2019.0312
- Jia X, Luo T, Ren S, Guo K, Li F. Small sample-based disease diagnosis model acquisition in medical human-centered computing. J Wireless Com Network 2019;2019:212
- Han C, Rundo L, Araki R, Furukawa Y, Mauri G, Nakayama H, et al. Infinite brain MR images: PGGAN-based data augmentation for tumor detection. In Esposito A, Faundez-Zanuy M, Morabito F, Pasero E, eds. Neural approaches to dynamics of signal exchanges. Singapore: Springer 2020:291-303
- Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012;25:1097-1105
- Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 2015;35:1170-1181 https://doi.org/10.1109/TMI.2015.2482920
- Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Adv Neural Inf Process Syst 2014:2672-2680
- Roth HR, Lee CT, Shin HC, Seff A, Kim L, Yao J, et al. Anatomy-specific classification of medical images using deep convolutional nets. New York: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) 2015:101-104
- Hao R, Namdar K, Liu L, Haider MA, Khalvati F. A comprehensive study of data augmentation strategies for prostate cancer detection in diffusion-weighted MRI using convolutional neural networks. ArXiv Preprint 2020;arXiv:2006.01693
- Zhao Z, Zhang Z, Chen T, Singh S, Zhang H. Image augmentations for GAN training. ArXiv Preprint 2020;arXiv:2006.02595
- Tang C, Li J, Wang L, Li Z, Jiang L, Cai A, et al. Unpaired low-dose CT denoising network based on cycle-consistent generative adversarial network with prior image information. Comput Math Methods Med 2019;2019:8639825
- Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 2018;37:1348-1357 https://doi.org/10.1109/TMI.2018.2827462
- Dong Z, Liu G, Ni G, Jerwick J, Duan L, Zhou C. Optical coherence tomography image denoising using a generative adversarial network with speckle modulation. J Biophotonics 2020;13:e201960135
- Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018;321:321-331 https://doi.org/10.1016/j.neucom.2018.09.013
- Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. ArXiv Preprint 2015;arXiv:1511.06434
- Zhao D, Zhu D, Lu J, Luo Y, Zhang G. Synthetic medical images using F&BGAN for improved lung nodules classification by multi-scale VGG16. Symmetry 2018;10:519
- Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J. Generalization of deep neural networks for chest pathology classification in X-rays using generative adversarial networks. Calgary: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2018:990-994
- He T, Zhang Z, Zhang H, Zhang Z, Xie J, Li M. Bag of tricks for image classification with convolutional neural networks. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019:558-567
- Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of gans for improved quality, stability, and variation. ArXiv Preprint 2017;arXiv:1710.10196
- Redmon J, Farhadi A. Yolov3: an incremental improvement. ArXiv Preprint 2018;arXiv:1804.02767
- Zhao J, Li D, Kassam Z, Howey J, Chong J, Chen B, et al. Tripartite-GAN: synthesizing liver contrast-enhanced MRI to improve tumor detection. Med Image Anal 2020;63:101667
- Bowles C, Chen L, Guerrero R, Bentley P, Gunn R, Hammers A, et al. Gan augmentation: augmenting training data using generative adversarial networks. ArXiv Preprint 2018;arXiv:1810.10863
- Russ T, Goerttler S, Schnurr AK, Bauer DF, Hatamikia S, Schad LR, et al. Synthesis of CT images from digital body phantoms using CycleGAN. Int J Comput Assist Radiol Surg 2019;14:1741-1750 https://doi.org/10.1007/s11548-019-02042-9
- Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. Venice: Proceedings of the IEEE Conference on Computer Vision 2017:2223-2232
- Gupta A, Venkatesh S, Chopra S, Ledig C. Generative image translation for data augmentation of bone lesion pathology. ArXiv Preprint 2019;arXiv:1902.02248
- Sandfort V, Yan K, Pickhardt PJ, Summers RM. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 2019;9:16884
- Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In Navab N, Hornegger J, Wells W, Frangi A, eds. International conference on medical image computing and computer-assisted intervention. Cham: Springer 2015:234-241
- Wu E, Wu K, Cox D, Lotter W. Conditional infilling GANs for data augmentation in mammogram classification. In Stoyanov D, Taylor Z, Kainz B, Maicas G, Beichel RR, Martel A, et al. Image analysis for moving organ, breast, and thoracic images. Cham: Springer 2018:98-106
- Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, et al. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. Biomed Res Int 2019;2019:6051939
- Arjovsky M, Chintala S, Bottou L. Wasserstein gan. ArXiv Preprint 2017;arXiv:1701.07875
- Han C, Hayashi H, Rundo L, Araki R, Shimoda W, Muramatsu S, et al. GAN-based synthetic brain MR image generation. Washington D.C.: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018:734-738
- Chuquicusma MJ, Hussein S, Burt J, Bagci U. How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis. Washington D.C.: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) 2018:240-244
- Zhao M, Cong Y, Carin L. On leveraging pretrained GANs for generation with limited data. ArXiv Preprint 2020;arXiv:2002.11810
- DeVries T, Taylor GW. Improved regularization of convolutional neural networks with cutout. ArXiv Preprint 2017;arXiv:1708.04552
- Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. Mixup: beyond empirical risk minimization. ArXiv Preprint 2017;arXiv:1710.09412
- Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y. Cutmix: regularization strategy to train strong classifiers with localizable features. Seoul: Proceedings of the IEEE International Conference on Computer Vision 2019:6023-6032
- Hendrycks D, Mu N, Cubuk ED, Zoph B, Gilmer J, Lakshminarayanan B. Augmix: a simple data processing method to improve robustness and uncertainty. ArXiv Preprint 2019;arXiv:1912.02781
- Bae HJ, Kim CW, Kim N, Park B, Kim N, Seo JB, et al. A Perlin noise-based augmentation strategy for deep learning with small data samples of HRCT images. Sci Rep 2018;8:17687
- Perlin K. An image synthesizer. ACM Siggraph Computer Graphics 1985;19:287-296 https://doi.org/10.1145/325165.325247
- Perlin K. Improving noise. ACM transactions on graphics. San Antonio: Proceedings of ACM SIGGRAPH 2002;21:681-682 https://doi.org/10.1145/566654.566636
- Noguchi S, Nishio M, Yakami M, Nakagomi K, Togashi K. Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques. Comput Biol Med 2020;121;103767
- Takahashi R, Matsubara T, Uehara K. RICAP: random image cropping and patching data augmentation for deep CNNs. Beijing: Asian Conference on Machine Learning 2018:786-798