In component-based system, the qualities of components as reusable units are the most important to success the component-based development. Therefore, before software implementation phase, the designed components should be measurable to improve the qualities of the components and the measured results should be reflected in the component-based development phase. In addition, the qualities of the components should be measured accurately. Accordingly, this paper proposes cohesion and coupling metrics applying static and dynamic dependency characteristics by the interdependence between classes. We prove the theoretical soundness of the proposed metrics by the axiom of briand et al. A case study and a comparison with the conventional metrics verify the practicality of the proposed metrics. The development times and endeavors to design the components is reduced, because the proposed metrics measure the qualities of components accurately.
최근의 영상 처리 분야는 딥러닝 기법들의 성능이 입증됨에 따라 다양한 분야에서 이와 같은 기법들을 활용해 영상에 대한 분류, 분석, 검출 등을 수행하려는 시도가 활발하다. 그중에서도 의료 진단 보조 역할을 할 수 있는 의료 영상 분석 소프트웨어에 대한 기대가 증가하고 있는데, 본 연구에서는 캡슐내시경 영상에 주목하였다. 캡슐내시경은 주로 소장 촬영을 목표로 하며 식도부터 대장까지 약 8~10시간 동안 촬영된다. 이로 인해 CT, MR, X-ray와 같은 다른 의료 영상과 다르게 하나의 데이터 셋이 10~15만 장의 이미지를 갖는다. 일반적으로 캡슐내시경 영상을 판독하는 순서는 위장관 교차점(Z-Line, 유문판, 회맹판)을 기준으로 위장관 랜드마크(식도, 위, 소장, 대장)를 구분한 뒤, 각 랜드마크 별로 병변 정보를 찾아내는 방식이다. 그러나 워낙 방대한 영상 데이터를 가지기 때문에 의사 혹은 의료 전문가가 영상을 판독하는데 많은 시간과 노력이 소모되고 있다. 본 논문의 목적은 캡슐내시경 영상의 판독에서 모든 환자에 대해 공통으로 수행되고, 판독하는 데 많은 시간을 차지하는 위장관 랜드마크를 찾는 것에 있다. 이를 위해, 위장관 랜드마크를 식별할 수 있는 CNN 학습 모델을 설계하였으며, 더욱 효과적인 학습을 위해 전처리 과정으로 학습에 방해가 되는 학습 노이즈 영상들을 제거하고 위장관 랜드마크 별 특징 분석을 진행하였다. 총 8명의 환자 데이터를 가지고 학습된 모델에 대해 평가 및 검증을 진행하였는데, 무작위로 환자 데이터를 샘플링하여 학습한 모델을 평가한 결과, 평균 정확도가 95% 가 확인되었으며 개별 환자별로 교차 검증 방식을 진행한 결과 평균 정확도 67% 가 확인되었다.
Ko, Minhyuk;Seo, Yongjin;Yun, Sangpil;Kim, Hyeon Soo
KIPS Transactions on Software and Data Engineering
/
v.2
no.10
/
pp.679-690
/
2013
Smartphones have features that users feel free to install/delete the program they want. Their emergence makes many developers rush into the Smartphone application development market. Thus, developing good applications quickly is becoming even more intense competition in the market. Because, however, the application development and deployment procedures are simple in the Android environments and anyone can participate in the development easily, applications not validated thoroughly are likely to be deployed. Therefore, a systematic approach that can verify Android-based applications with fewer burdens is required. In this paper, we propose a method that generates automatically GUI-based testing scenarios for the Android applications. The automated test scenario generation can reduce the time which the developer spends on testing, thus it can improve the productivity of the development in the testing phase.
KIPS Transactions on Software and Data Engineering
/
v.7
no.12
/
pp.477-484
/
2018
Due to the advancement of computer and information technologies, numerous papers have been published. As new research fields continue to be created, users have a lot of trouble finding and categorizing their interesting papers. In order to alleviate users' this difficulty, this paper presents a method of grouping similar papers and clustering them. The presented method extracts primary keywords from the abstracts of each paper by using TF-IDF. Based on TF-IDF values extracted using K-means clustering algorithm, our method clusters papers to the ones that have similar contents. To demonstrate the practicality of the proposed method, we use paper data in FGCS journal as actual data. Based on these data, we derive the number of clusters using Elbow scheme and show clustering performance using Silhouette scheme.
The purpose of this study was to develop and test an eye tracker focusing on early childhood participants, based on the characteristics of early childhood eye tracking studies. Eye tracking collects eye movement data of the subject, which provides scientific evidence of human cognition and thinking. The researcher built a Do It Yourself eye tracker camera module from general electronic components, and used Viewpoint analysis software from Arrington Research. The researcher compared the eye tracking data between the DIY eye tracker group and Tobii Pro eye tracker group, which provides a professional eye tracking system. Eye tracking data was collected from 52 five-year old children. The average proportion of valid trials between the two groups was compared with t test, and no significant difference was found. This result indicates that the DIY eye tracker can be used to collect valid eye tracking data from young children under certain research environment.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.251-253
/
2019
This paper describes an implementation of a security SoC (System-on-Chip) prototype that interfaces a microprocessor with a block cipher crypto-core. The Cortex-M0 was used as a microprocessor, and a crypto-core implemented by integrating ARIA and AES into a single hardware was used as an intellectual property (IP). The integrated ARIA-AES crypto-core supports five modes of operation including ECB, CBC, CFB, CTR and OFB, and two master key sizes of 128-bit and 256-bit. The integrated ARIA-AES crypto-core was interfaced to work with the AHB-light bus protocol of Cortex-M0, and the crypto-core IP was expected to operate at clock frequencies up to 50 MHz. The security SoC prototype was verified by BFM simulation, and then hardware-software co-verification was carried out with FPGA implementation.
Journal of the Korea Institute of Information Security & Cryptology
/
v.31
no.3
/
pp.411-422
/
2021
The autonomous driving system mounted on the unmanned vehicle recognizes the external environment through several sensors and derives the optimum control value through it. Recently, studies on physical level attacks that maliciously manipulate sensor data by performing signal-injection attacks have been published. signal-injection attacks are performed at the physical level and are difficult to detect at the software level because the sensor measures erroneous data by applying physical manipulations to the surrounding environment. In order to detect a signal-injection attack, it is necessary to verify the dependability of the data measured by the sensor. As so far, various methods have been proposed to attempt physical level attacks against sensors mounted on autonomous driving systems. However, it is still insufficient that methods for defending and detecting the physical level attacks. In this paper, we demonstrate signal-injection attacks targeting MEMS sensors that are widely used in unmanned vehicles, and propose a method to detect the attack. We present a signal-injection detection model to analyze the accuracy of the proposed method, and verify its effectiveness in a laboratory environment.
Chang, Suk;Nam, Do Woo;Sim, Jeong Hwan;Kim, Dong Hee
Journal of the Korea Society for Simulation
/
v.29
no.4
/
pp.85-94
/
2020
In determining the feasibility of planning and launching railway transportation projects, various decision-making processes are essentially required. LCC(Life Cycle Cost) value including total construction cost and operation cost is estimated in approximation Model with rough guideline. In this study, modeling and simulation-based analysis method is proposed to support the decision making process of railroad transportation and derivation of LCC. Firstly, cost analysis model was constructed by collecting various existing rail transportation business data to enable analyze based on numerical data, and the result were analyzed by DOE(Design Of Experiments) and RSM (Response Surface Method) simulation. Professional commercial software tools were used for effective model construction and simulation. In order to verify the research results, the actual railroad transportation projects were selected, and the results of the analysis were compared.
Kim, Bongchul;Kim, Jaejun;Moon, Woojong;Seo, Youngho;Kim, Jungah;OH, Jeongcheol;Kim, Yongmin;Kim, Jonghoon
Journal of The Korean Association of Information Education
/
v.25
no.2
/
pp.337-346
/
2021
Despite the increasing rate of use of data science in various fields of society, research on data science education programs is relatively inadequate. In this study, a data science education program for elementary school students was developed and its effectiveness was verified. We created a program that collects data using microbit, one of the physical computing tools, and developed an education program that performs the data science stage of analyzing the collected data to derive results. A study was conducted on 10 students enrolled in the Information Gifted Program at 00 University, and pre- and post-tests of computing thinking skills were conducted to verify the effectiveness. As a result, it was found that the data science education program developed through this study has a significant effect on improving the computational thinking of elementary school students.
KIPS Transactions on Software and Data Engineering
/
v.11
no.7
/
pp.307-314
/
2022
Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.