• Title/Summary/Keyword: 건축자재

Search Result 586, Processing Time 0.027 seconds

The Types and Characteristics of Rural Housing in Ulleungdo Mountains (울릉도 산지 촌락 가옥의 유형과 특성)

  • Lee, Jeon
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.3
    • /
    • pp.441-454
    • /
    • 2016
  • This study deals with the contemporary rural housing with special reference to the roof types/materials and the outer wall materials in Ulleungdo Mountains. The most frequent roof type of rural housing is the hip-and-gable roof type(42.1%); and the next, the gable roof type(25.8%). For the roof materials, the precoated steel plate(69.1%), the asphalt shingle(11.8%), and the cement(10.7%) are the most frequent but the roofing tile and the artificial slate are not used. And for the outer wall materials, the cement(27.5%), the siding(21.3%), the corrugated galvanized iron(16.8%), and the lumber sheet(6.7%) are the most frequent. It is the hip-and-gable roof housing type with the precoated steel plate(roof materials)(41%), or the hip-and-gable roof housing type with the precoated steel plate(roof materials) and the cement(outer wall material) (18.0%) that is the most frequent type of rural housing in Ulleungdo Mountains. For the roof/wall materials, the ratio of the corrugated galvanized iron is high probably due to the relatively low cost of transport, and the ratio of the roofing tile, the artificial slate, the red brick, and the building stone is very low probably due to the relatively high cost of transport.

  • PDF

A Quantitative Risk Analysis of Related to Tower Crane Using the FMEA (타워크레인의 정량적 위험성 평가가법에 관한 연구(FMEA 기법 위주))

  • Shim, Kyu-Hyung;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.34-39
    • /
    • 2010
  • The purpose of this study is to suggest objective evaluation model as a plan to utilize as opportunity in establishing judgment standard of mutual inspection criteria and to upgrade inspection ability by reviewing and analyzing level of danger and importance in advance based on inspection results of inspection institutions regarding tower cranes used in construction fields. Tower crane is a mechanical device transporting construction supplies and heavy materials to places over 20~150M high from the ground for the period ranging from a short time of 2~3 months to two years after being installed in construction sites in vicinity of buildings or structures and is an important facility indispensable for construction sites. However, since use period after installation is short and professional technical ability of technicians working on-site about of tower crane is poor, systematic and quantitative safety management is not carried out As a part of researches on procedure of RBI(Risk Based Inspection) possible to apply to Knowledge Based System based on knowledge and experiences of experts as well as to tower cranes for solving these problems, quantitative RPN(Risk Priority Number) was applied to RPN utilizing technique of FMEA(Failure Mode and Effect Analyses). When general RBI 80/20 Rule was applied parts with high level of risks were found out as wire rope, hoist up/down safety device, reduction gear, and etc. However, since there are still many insufficient parts as risk analyses of tower crane were not established, it is necessary for experts with sufficient experiences and knowledge to supplement active RBI techniques and continuous researches on tower cranes by sharing and setting up data base of important information with this study as a starting point.

Automation of Information Extraction from IFC-BIM for Indoor Air Quality Certification (IFC-BIM을 활용한 실내공기질 인증 요구정보 생성 자동화)

  • Hong, Simheee;Yeo, Changjae;Yu, Jungho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.63-73
    • /
    • 2017
  • In contemporary society, it is increasingly common to spend more time indoors. As such, there is a continually growing desire to build comfortable and safe indoor environments. Along with this trend, however, there are some serious indoor-environment challenges, such as the quality of indoor air and Sick House Syndrome. To address these concerns the government implements various systems to supervise and manage indoor environments. For example, green building certification is now compulsory for public buildings. There are three categories of green building certification related to indoor air in Korea: Health-Friendly Housing Construction Standards, Green Standard for Energy & Environmental Design(G-SEED), and Indoor Air Certification. The first two types of certification, Health-Friendly Housing Construction Standards and G-SEED, evaluate data in a drawing plan. In comparison, the Indoor Air Certification evaluates measured data. The certification using data from a drawing requires a considerable amount of time compared to other work. A 2D tool needs to be employed to measure the area manually. Thus, this study proposes an automatic assessment process using a Building Information Modeling(BIM) model based on 3D data. This process, using open source Industry Foundation Classes(IFC), exports data for the certification system, and extracts the data to create an Excel sheet for the certification. This is expected to improve the work process and reduce the workload associated with evaluating indoor air conditions.

Study on the Ship Fire Analysis According to Explosion Hazard (폭발의 위험성에 의한 선박화재의 사고사례 분석)

  • You, Jisun;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.80-86
    • /
    • 2015
  • This study analyzed recent cases of ship fires explosions and investigated their problems and coping plans. Through analysis on the statistical figures, it was found that our nation's situations of maritime accidents by kind during the period of 2009~2013 showed the ratios of ship accidents caused by fires explosions was the highest in 2012 with 7.58% (55 cases) followed by year 2009 with 3.39% (34 cases), year 2010 with 3.39% (25 cases), year 2011 with 6.03% (57 cases) and year 2013 with 6.74% (43 cases), which indicates a steady increase in the number of ship accidents. Majority of reasons for ship fires explosions were lack of safety awareness. Since those accidents happen on the sea, fires, once they happen, tend to get serious due to absence of on board & nearby fire extinguishing facilities, public fire service's uneasy access to them and great influences of natural factors such as wind and etc. Ship fires explosions are special cases unlike what happens to general edifices. So, their coping plans should focus on preventive measures since the damages those cases bring about can be detrimental. For this reason, it's necessary to research precise evacuation plans, develop ship structure & materials reinforcing fire resistance to secure more time for evacuation and enhance people's safety awareness by implementing thorough safety training.

Efficiency Analysis for RFID-based Curtain Wall of unit Type Construction (RFID 기술 적용에 따른 유닛타입 커튼월 공사의 효율성 분석)

  • Kang, Hyun-Koo;Ha, Young-Seo;Lim, Chul-Woo;Kim, Chang-Duk;Yu, Jung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.3
    • /
    • pp.206-213
    • /
    • 2008
  • Due to the following reasons, the management of curtain wall parts and material is very Important. Firstly, curtain wall work is one of the main works in High-rise building construction for it takes about $10{\sim}15%$ of the total construction cost. Secondly, the whole process of curtain wall work including manu acture, delivery, storage, installation and maintenance is very complicated and sometimes more than 30 companies involve in the process. Thus there are many control points for curtain wall units. Thirdly, there are not enough space on site for material storage and this situation is more serious for sites in urban area. The purpose of this research is to validate an information systems using RFID technology that is developed to manage the curtain wall units following the process of curtain wall work. For the validation, the cycle times of curtain wall work before and a ter the system was used. The results show that using the systems shorten the cycle time of the curtain wall work. Thus it is concluded that the system can increase the efficiency of managing curtain wall work.

Affected Model of Indoor Radon Concentrations Based on Lifestyle, Greenery Ratio, and Radon Levels in Groundwater (생활 습관, 주거지 주변 녹지 비율 및 지하수 내 라돈 농도 따른 실내 라돈 농도 영향 모델)

  • Lee, Hyun Young;Park, Ji Hyun;Lee, Cheol-Min;Kang, Dae Ryong
    • Journal of health informatics and statistics
    • /
    • v.42 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • Objectives: Radon and its progeny pose environmental risks as a carcinogen, especially to the lungs. Investigating factors affecting indoor radon concentrations and models thereof are needed to prevent exposure to radon and to reduce indoor radon concentrations. The purpose of this study was to identify factors affecting indoor radon concentration and to construct a comprehensive model thereof. Methods: Questionnaires were administered to obtain data on residential environments, including building materials and life style. Decision tree and structural equation modeling were applied to predict residences at risk for higher radon concentrations and to develop the comprehensive model. Results: Greenery ratio, impermeable layer ratio, residence at ground level, daily ventilation, long-term heating, crack around the measuring device, and bedroom were significantly shown to be predictive factors of higher indoor radon concentrations. Daily ventilation reduced the probability of homes having indoor radon concentrations ${\geq}200Bq/m^3$ by 11.6%. Meanwhile, a greenery ratio ${\geq}65%$ without daily ventilation increased this probability by 15.3% compared to daily ventilation. The constructed model indicated greenery ratio and ventilation rate directly affecting indoor radon concentrations. Conclusions: Our model highlights the combined influences of geographical properties, groundwater, and lifestyle factors of an individual resident on indoor radon concentrations in Korea.

Flexible Unit Floor Plan of a Modular House Considering the Production System (생산 시스템을 고려한 모듈러주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2021
  • After World War II, modular housing was developed as a means of quickly and efficiently meeting the housing supply demand. For the past 30 plus years, efforts have been made to improve modular housing in South Korea and to increase their competitiveness in the housing market. This study investigated modular houses based on a steel framed rahem structure which provides a flexible floor plan where walls are easily reconfigured to create rooms of various sizes and functions. Similar to the factory production methods used in the automotive industry, the modular housing industry can also benefit by standardizing such aspects as building components, manufacturing and construction methods, materials, process management, and floor plans. This study examined the feasibility of using a 3m × 3m module for developing various floor plans which are easy to produce and transport. Each 3m × 3m module can be configured to meet different living needs resulting in a complete home when multiple modules are connected. The module configurations can be varied to meet ground transportation and crane limitations. This study found that a 3m × 3m steel framed modular unit is a promising step towards providing residents with plans that meet their living preferences while improving and increasing the supply of modular houses.

Evaluation of Smoke Risk and Smoke Risk Rating for Combustible Substances from Fire (화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가)

  • Chung, Yeong-Jin;Jin, Eui;You, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • This study investigated the smoke risk assessment of woods and plastics for construction materials, focusing on the smoke performance index-V (SPI-V), smoke growth index-V (SGI-V), and smoke risk index-VI (SRI-VI) according to a newly designed methodology. Spruce, Lauan, polymethylmethacrylate (PMMA), and polycarbonate (PC) were used for test pieces. Smoke characteristics of the materials were measured using a cone calorimeter (ISO 5660-1) equipment. The smoke performance index-V calculated after the combustion reaction was found to be 1.0 to 3.4 based on PMMA. Smoke risk by smoke performance index-V was increased in the order of PC, Spruce, Lauan and PMMA. Lauan and PMMA showed similar values. The smoke growth index-V was found to be 1.0 to 9.2 based on PMMA. Smoke risk by smoke growth index-V increased in the order of PMMA, PC, Spruce, and Lauan. COpeak production rates of all specimens were measured between 0.0021 to 0.0067 g/s. In conclusion, materials with a low smoke performance index-V and a high smoke growth index-V cause a high smoke risk from fire. Therefore, it is understood that the smoke risk from fire is high. It is collectively summarized by the smoke risk index-VI.

An Empirical Analysis on the Working Conditions of Construction Technician (건설 기능인력 근무여건에 대한 실증 분석)

  • Yang, Jinkook;Lee, Taeshin;Lee, Jongmin;Lee, Sangbeom
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • The construction phase of the construction project needs a large scale of manpower, materials and equipment. Among them, manpower is a core part for project construction. These manpower are divided into two groups. The first is the management group that manages the construction, and the second is the site technician manpower for construction work. Recently, construction company has suffering due to the insufficient supply of technician labor. Accordingly, this study will perform an empirical analysis about the construction technician. To do this, we surveyed related research trends and conducted surveys on the satisfaction of the construction technician. The result, satisfaction with pay and insurance was relatively low compared to other items. Therefore, this study were conducted in-depth interviews with technician managers in order to analyze the cause. In addition, case analysis was conducted to analyze actual working conditions. As a result, it was analyzed that the wage level and insurance system of construction technician were considerably stable compared to the manufacturing industry. The result of this study is expected to contribute to the activation of excellent technician cultivation through the change of recognition about construction technician.

A Preliminary Study on Energy Consumption Analysis in Storage Space for Exhibition Facility by using Absorption Material (조습재 사용에 따른 전시시설 수장고의 에너지 사용량 분석에 대한 기초연구)

  • Kim, Jinhwan;Hong, Taehoon;Jeong, Kwangbok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.53-59
    • /
    • 2019
  • As solve the shortage problems of storage space for exhibition facilities, the South Korean government is establishing plans to expand storage space for exhibition facilities. From a medium- to long-term perspective, an energy-efficient storage space for exhibition facility is needed to implement efficient state budget execution and achieve national greenhouse gas reduction goals. In this regard, this study analyzed the energy consumption of storage space for exhibition facilities according to the use of absorption materials. To this end, a case study was conducted on 12 storage spaces for exhibition facilities in South Korea. Compared to the storage space using the absorption material, the storage space without using the absorption material showed an increase in HVAC system operation time by 47.50% during summer periods and 58.85% in non-summer periods. In particular, the analysis found that in the case of storage for 'H' exhibition facility, the energy cost was reduced by 2,721,700 won/year after remodeling work using the absorption material. It is expected that the findings of this study can help the government and the person in charge from construction companies to construct energy-efficient storage space room for exhibition facilities.