DOI QR코드

DOI QR Code

Evaluation of Smoke Risk and Smoke Risk Rating for Combustible Substances from Fire

화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • You, Ji Sun (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터) ;
  • 유지선 (강원대학교 소방방재연구센터)
  • Received : 2021.03.09
  • Accepted : 2021.03.26
  • Published : 2021.04.10

Abstract

This study investigated the smoke risk assessment of woods and plastics for construction materials, focusing on the smoke performance index-V (SPI-V), smoke growth index-V (SGI-V), and smoke risk index-VI (SRI-VI) according to a newly designed methodology. Spruce, Lauan, polymethylmethacrylate (PMMA), and polycarbonate (PC) were used for test pieces. Smoke characteristics of the materials were measured using a cone calorimeter (ISO 5660-1) equipment. The smoke performance index-V calculated after the combustion reaction was found to be 1.0 to 3.4 based on PMMA. Smoke risk by smoke performance index-V was increased in the order of PC, Spruce, Lauan and PMMA. Lauan and PMMA showed similar values. The smoke growth index-V was found to be 1.0 to 9.2 based on PMMA. Smoke risk by smoke growth index-V increased in the order of PMMA, PC, Spruce, and Lauan. COpeak production rates of all specimens were measured between 0.0021 to 0.0067 g/s. In conclusion, materials with a low smoke performance index-V and a high smoke growth index-V cause a high smoke risk from fire. Therefore, it is understood that the smoke risk from fire is high. It is collectively summarized by the smoke risk index-VI.

본 연구는 건축용 자재인 목재 및 플라스틱의 연기 위험성 평가에 대하여 새로 고안된 연기성능지수-V (smoke performance index-V, SPI-V), 연기성장지수-V (smoke growth index-V, SGI-V), 연기위험성지수-VI (smoke risk index-VI, SRI-VI)를 중심으로 조사하였다. 시험편은 가문비나무, 나왕, polymethylmethacrylate (PMMA), polycarbonate (PC)를 사용하였다. 연기 특성은 콘칼로리미터(ISO 5660-1) 장비를 사용하여 시험편에 대하여 측정하였다. 연소반응 후 측정된 연기성능지수-V는 PMMA를 기준으로 1.0~3.4로 나타났다. 연기성능지수-V에 의한 연기위험성은 PC, 가문비나무, 나왕과 PMMA 순서로 증가하였다. 나왕과 PMMA는 유사한 값으로 나타났다. 연기성장지수-V는 PMMA를 기준으로 1.0~9.2로 나타났다. 연기성장지수-V에 의한 연기위험성은 PMMA, PC, 가문비나무, 나왕의 순서로 증가하였다. 모든 시편의 CO 피크 발생속도는 0.0021~0.0067 g/s로 측정되었다. 결론적으로 연소가 용이한 물질은 연기성능지수-V가 낮고, 연기성장지수-V가 높기 때문에 화재로 인한 연기위험성이 높은 것으로 이해된다. 이는 총괄적으로 연기위험성지수-VI로 정리된다.

Keywords

References

  1. T. S. Kim, Y. S. Kim, C. K. Yoon, and Y. J. Chung, The Guide of Fire Investigation, 77-98, Kimoondang, Seoul, Korea (2009).
  2. H. J. Park, H. Kim, and D. M. Ha, Predicting of fire characteristics of flame retardant treated Douglas fir using an integral model, J. KOSOS., 20, 98-104 (2005).
  3. O. Grexa, Flame retardant treated wood products, The Proceedings of Wood & Fire Safety (part one), 101-110 (2000).
  4. H. Vahabi, B. K. Kandola and M. R. Saeb, Flame retardancy index for thermoplastic composites, Polymers, 11, 407-417 (2019). https://doi.org/10.3390/polym11030407
  5. R. Sonnier, A. Viretto, L. Dumazert, B. Gallard. A method to study the two-step decomposition of binary blends in cone calorimeter, Combustion and Flame, 169, 1-10 (2016). https://doi.org/10.1016/j.combustflame.2016.04.016
  6. R. E. Lyon and M. L. Janssens, Polymer Flammability, The National technical information service (NTIS), U.S. Department of Commerce, Washington DC, USA (2005).
  7. R. H. White and M. A. Dietenberger, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire safety, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
  8. G. Shen, S. Tao, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, Y. Huang, Y. Chen, H. Chen, Y. Yang, W. Wang, X. Wang, W. Liu, and S. L. M. Simonich, Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in Rural China, Environ. Sci. Technol., 46, 8123-8130 (2012). https://doi.org/10.1021/es301146v
  9. J. Ding, J. Zhong, Y. Yang, B. Li, G. Shen, Y. Su, C. Wang, W. Li, H. Shen, B. Wang, R. Wang, Y. Huang, Y. Zhang, H. Cao, Y. Zhu, S. L M Simonich, and S. Tao, Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural chinese home through biomass fuelled cooking, Environ. Pollution, 169, 160-166 (2012). https://doi.org/10.1016/j.envpol.2011.10.008
  10. L. Shi and M. Y. L. Chew, Fire behaviors of polymers under autoignition conditions in a cone calorimeter, Fire Saf. J., 61, 243-253 (2013). https://doi.org/10.1016/j.firesaf.2013.09.021
  11. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
  12. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  13. L. Yan, Z. Xu and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Progress in Organic Coatings, 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  14. T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabou, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus, J. Anal. Appl. Pyrolysis, 107, 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  15. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076
  16. Y. J. Chung and E. Jin, Assessment of smoke risk of combustible materials in fire, Appl. Chem. Eng., 31, 277-283 (2020). https://doi.org/10.14478/ACE.2020.1024
  17. W. T. Simpso, Drying and control of moisture content and dimensional changes, Chap. 12, Wood Handbook-wood as an Engineering Material, 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1987).
  18. T. Y. Woo, J. S. You, and Y. J. Chung, Combustion properties of construction lumber used in every life, Fire Sci. Eng., 31, 37-43 (2017). https://doi.org/10.7731/KIFSE.2017.31.5.037
  19. D. J. Silva and H. Wiebeck, Predicting LDPE/HDPE blend composition by CARS-PLS regression and confocal Raman spectroscopy, Polimeros, 29, 1-7 (2019).
  20. Y. Liu, B. Fan, A. L. Hamon, D. He, and J. Bai, Thickness effect on the tensile and dynamic mechanical properties of graphene nano-platelets reinforced polymer nanocomposites, HAL, 2, 21-27 (2020).
  21. Y. J. Chung, Combustion characteristics of the Quercus varialis and Zelkova serrata dried at room temperature, J. Kor. Forest Soc., 99, 96-101 (2010).
  22. J. G. Quintire, Principles of fire behavior, Chap. 5, Cengage Learning, Delmar, USA (1998)
  23. Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  24. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Chap. 8. In : Thermal Characterization of Polymeric Materials, Academic press, New York, USA (1981).
  25. M. J. Spearpoint and J. G. Quintiere. Predicting the piloted ignition of wood in the cone calorimeter using an integral model - effect of species, grain orientation and heat flux, Fire Safety J., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
  26. V. Babraskas, Ignition of Wood: A Review of the State of the Art. Interflam 2001, 71-88, Interscience Communications Ltd., London (2001).
  27. A. D. Chirco, M. Armanini, P. Chini, G. Cioccoho, F. Provasoli, and G. Audiso, Flame retardants for polypropylene based on lignin, Polym. Degrad. Stabil., 79, 139-145 (2002). https://doi.org/10.1016/S0141-3910(02)00266-5
  28. J. D. Dehaan, Kirk's Fire Investigation (Fifth Ed.), 84-112, Pearson, London, England (2002).
  29. V. Babrauskas, Development of the cone calorimeter - A bench - scale, heat release rate apparatus based on oxygen consumption, Fire and Mater., 8, 81-95 (1984). https://doi.org/10.1002/fam.810080206
  30. C. Jiao, X. Chen, and J. Zhang, Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009). https://doi.org/10.1177/0734904109102033
  31. T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabouille, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter - FTIR apparatus, J. Anal. Appl. Pyrolysis, 107, 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  32. J. Luche, T. Rogaume, F. Richard, and E. Guillaume, Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter, Fire Saf. J., 46, 451-461 (2011). https://doi.org/10.1016/j.firesaf.2011.07.005
  33. MSHA, Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Topic, U. S. Department of Labor, USA (2015).