• Title/Summary/Keyword: 건축공정

Search Result 441, Processing Time 0.029 seconds

A Study on the Detoxification of Chrysotile and the use of High-density Extruded Cement Panel Reinforcement Fibers (백석면의 무해 섬유화 처리 방법과 고밀도 압출성형 패널 활용 연구)

  • Jang, Kyong-Pil;Kim, Tae-Hyoung;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.223-228
    • /
    • 2021
  • The final disposal method for asbestos building materials is to be landfilled at a designated waste landfill in accordance with the Waste Management Act. However, it is difficult to secure a domestic designated waste landfill site to landfill the entire amount of asbestos waste, which is expected to emit more than 400,000 ton/year by 2044. In this study, a detoxification treatment was performed on a ceiling tex with a density of 1.0 to 1.2g/cm3 containing 3 to 7% of chrysotile, and it was used as a reinforcing fiber for extruded panels. It was confirmed that asbestos components were detoxified through the reaction process using 30% oxalic acid and carbon dioxide, and it was recognized that these detoxifying properties were maintained even after extrusion molding. However, it was found that milling to a fiber size of less than 1mm for complete detoxification of asbestos resulted in a decrease in reinforcing performance. Therefore, in the case of using detoxified asbestos fibers in the extrusion molding process, it is considered desirable to add fibers with a length of 5mm or more to improve the reinforcing performance.

Analysis of the Finishing Failure in the Railway Station Platform and Deduction of Improvement Plans (철도역사 승강장 연단부 마감 탈락에 대한 원인 분석 및 개선 방안)

  • Ko, Sewon;Yu, Youngsu;Koo, Bonsang;Kim, Jihwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The railway platform is an important facility closely related to the safety of passengers, trains, and images of railway facilities, and requires thorough facility management. However, the problem that the finishing material (plastering mortar) for the joint finishing of dissimilar materials (concrete+granite) falls off in the direction of the track at the platform podium is occurring multiple times across the country. Since these problems threaten the safety of train operation and the safety of passengers, immediate and continuous management is required. This study tried to derive improvement plans through the analysis of the drop-off problem of finishing materials occurring at the platform podium. The status of missing finishing materials for the platform podiums of about 200 railway stations and the related design and construction standards of the Korea National Railway were investigated. After that, the cause of the drop-off of the finishing material was analyzed, and as a result, it was found that the main cause was the boundary between the roadbed and the architectural process that occurred during construction. Subsequently, in connection with the derived causes and design, construction standards, (1) improvement of finishing materials or construction methods, (2) design of finishing materials that are easy to adjust height, (3) design of separate finishing methods, (4) improvement methods and durability were suggested.

Photochemical Conversion of NOX in Atmosphere by Photocatalyst Coated Mortar (광촉매 코팅한 모르타르를 이용한 대기 중 NOX의 광화학적 변환)

  • Hyeon Jin;Kyong Ku Yun;Hajin Choi;Kyo-Seon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.240-246
    • /
    • 2023
  • This study was performed to convert NOx in atmosphere by photochemical reaction utilizing the eco-friendly solar energy. The mortar specimen coated with photocatalyst was fabricated and the photochemical conversion efficiency of NOx was analyzed. The photocatalyst coated concrete was fabricated by first adding TiO2 photocatalyst on the bottom of mold first and next adding cement mortar and, then, curing the concrete mortar. The grease was sprayed on the bottom of mold in advance so that the concrete can be demolded easily after curing. The conversion efficiencies of NOx by photochemical reactions were investigated systematically by changing the process variable conditions of amount of TiO2 coating, UV-A light intensity, total gas flow rate, relative humidity and initial NOx concentration. It was confirmed that the photocatalyst coated concrete fabricated in this study could convert NOx successfully for various process conditions in atmosphere. In future, we believe this research result can be utilized as basic data to design the infrastructure of building, tunnel and road for controlling efficiently the air pollutants such as NOx, SOx, and VOCs.

Analyzing Site Reliability for Residential, Civil and Plant Projects using Lean Construction Principles (린 건설에 기초한 국내 건설 공사의 시공 계획 신뢰도 평가 및 분석)

  • Koo, Bonsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.655-664
    • /
    • 2008
  • Lean Construction recommends implementing site production management by measuring the reliability of daily production tasks, collecting the causes for failure of incomplete tasks, and identifying problems in the existing process based on the collected data. Although many research projects have been performed to introduce Lean Construction in Korea, there are not many cases in which day-to-day site production operations has been stringently evaluated based on such methods. This paper introduces three cases in which such techniques were implemented on a residential, civil infrastructure and plant project. On each project, process maps were created with the superintendents and daily production meetings were held for two weeks. Consequently, the average PPC for the three projects was 79% for PPC and 16% for PAT. In addition, the majority of the failures were due to 'Directive/Plan' and 'Prerequisites.' The results show that project stakeholders (owners, contractors, etc.) lack the ability to plan ahead and keep to their plans, and also lack the capability to synchronize workflow between themselves. The results also reveal that project participants need to be more proactive in solving process problems on site and also need to be better educated in Lean concepts and methodologies.

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.

Application of PCM Technology to Concrete II : Effects of SSMA(Sulfonated Styrene-Maleic Anhydride) on the Properties of the 1-Dodecanol Micro-Capsule (PCM 기술의 콘크리트 적용 II : 계면중합법에 의한 1-도데카놀 마이크로 캡슐에 있어서 계면활성제로 사용된 SSMA의 표면활성도가 마이크로 캡슐의 특성에 미치는 영향)

  • Shin, Se-Soon;Jung, Jae-Yun;Lim, Myung-Kwan;Choi, Dong-Uk;Kim, Young-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • Thermal storage technology used for indoor heating and cooling to maintain a constant temperature for a long period of time has an advantage of raising energy use efficiency. This, the phase changing material, which utilizes heat storage properties of the substances, capsulizes substances that melt at a constant temperature. This is applied to construction materials to block or save energy due to heat storage and heat protection during the process in which substances melt or freeze according to the indoor or outdoor temperature. The micro-encapsulation method is used to create thermal storage from phase changing material. This method can be broadly classified in 3 ways: chemical method, physical and chemical method and physical and mechanical method. In the physical and chemical method, a wet process using the micro-encapsulation process utilized. This process emulsifies the core material in a solvent then coats the monomer polymer on the wall of the emulsion to harden it. In this process, a surfactant is utilized to enhance the performance of the emulsion of the core material and the coating of the wall monomer. The performance of the micro-encapsulation, especially the coating thickness of the wall material and the uniformity of the coating, is largely dependent on the characteristics of the surfactant. This research compares the performance of the micro-capsules and heat storage for product according to molecular mass and concentration of the surfactant, SSMA (sulfonated styrene-maleic anhydride), when it comes to micro-encapsulation through interfacial polymerization, in which Dodecan-1 is transformed to melamin resin, a heat storage material using phase changing properties. In addition, the thickness of the micro-encapsulation wall material and residual melamine were reduced by adjusting the concentration of melamin resin microcapsules.

Reaction Kinetics for the Synthesis of Diphenyl Carbonate from Dimethyl Carbonate (디메틸 카보네이트(DMC)로부터 디페닐카보네이트(DPC) 합성을 위한 반응속도론)

  • Choi, Yu-Mi;Cho, Im-Pyo;Cho, Hoon;Lee, Jin-Hong;Han, Myung-Wan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.766-771
    • /
    • 2012
  • PC (polycarbonate) is one of the widely used engineering plastics. Polycarbonate (PC) is traditionally produced by the reaction of phosgene and bisphenol-A. This phosgene process has the disadvantage as the high toxicity and corrosiveness of phosgene. The main point of focus to overcome the disadvantage of phosgene based process has been a route through dimethyl carbonate (DMC) to diphenyl carbonate (DPC). In this paper, for the DPC synthesis reaction using PBO as a catalyst, the effect of reaction temperature, reactant ratio, catalyst concentration on the reaction yield was investigated. A kinetic model for the DPC synthesis reaction was proposed and kinetic parameters for the proposed model was determined from batch reactor experiments. The predicted results by the proposed model were in good agreement with the experimental results.

Efficiency Analysis of Tower Crane Lifting Work for Project Management of Construction (건축공사의 공정관리를 위한 타워크레인 양중 효율성 분석)

  • Bae, Jeong-Hyeon;Kim, Ki-Hyuk;Lee, Donghoon
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Building Construction projects are getting higher and larger. Therefore, the use of Tower Crane, which is more productive than any other lifting plan shows a trend of continuous increases. However as equipment for transporting heavy goods, are is too expensive for the monthly rent and used inefficiently for construction. site so it is analyzed that it has problems of reducing productivity and efficiency of lifting work. Inefficient situations are arising like poor communications between operator and worker, occurrence of blind spots, securing the shortest distance of fire during movement after lifting plan, influences of weather, location of materials, movement radius of tower crane by each locations and ever-changing working environments. Therefore, in this study, we first made a list of tower cranes that are inefficiently used at the site, and then we made a checklist. After that, through field visits, we derived checklist for Tower Crane to comprehensive data value.

Relationship Between Construction Productivity and the Weather Elements in the Reinforced Concrete Structure for the High-rise Apartment Buildings (기후요소와 생산성간의 상관관계 분석에 관한 연구 - 공동주택 철근콘크리트 골조공사를 중심으로 -)

  • Kim Shin-Tae;Kim Yea-Sang;Chin Sang-yoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.80-89
    • /
    • 2004
  • Among the various factors influencing construction productivity, weather conditions or elements become very important factors in planning and executing construction project. It is especially true in Korea where the weather changes dramatically through few seasons. In this study, relationship between construction productivity of the reinforced concrete structure we for the high-rise apartment buildings and 5 weather elements including temperature, humidity, day time, rainfall, and wind velocity have been analyzed The results trough regression analysis showed that weather elements explain $58.8\%$ of productivity in total and temperature and day time were more important factors among them.

Estimation of Cycle Time for Construction Process of NATM Tunnel by using RFID Technology (RFID기술을 이용한 NATM터널 작업 프로세스의 사이클타임 산정방안 연구)

  • Park, NamJin;Kim, HyounSeung;Moon, HyounSeok;Kang, LeenSeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.41-49
    • /
    • 2012
  • Radio Frequency Identification(RFID) technology, which replace BAR CODE technology that has been widely utilizing in the field of the manufacturing industry for a long time, has been proven in the whole industries including national defense, transportation, and construction as well as manufacturing industry. Recently, with this trend, researches for adapting the RFID technology have been attempting continually centering on the architectural project in the construction industry. However, those researches are mainly focusing on the experimental utilization such as simple activity and material management. To solve these issues, this study demonstrated methodologies for adapting the RFID technology by the construction steps aiming to analyze cycle time of five types of construction process to the NATM method of tunneling work. Besides, the application of RFID technology in civil engineering work was verified by demonstrating the suggested methodology to actual sites. Therefore, it is expected that the suggested methodology will be utilized for predicting the progress rate and establishing of follow-up work plans, and the site applicability of the RFID technology will be expanded to the civil engineering projects.