• Title/Summary/Keyword: 건설공학교육

Search Result 122, Processing Time 0.023 seconds

Stress Variation Characteristics of Temporary Fixed Steel Rod in FCM Bridge Construction Method (FCM 교량 가설 공법에서 임시 고정 강봉의 응력 변화 특성 )

  • Hyun-Euk Kang;Wan-Shin Park;Young-Il Jang;Sun-Woo Kim;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.21-29
    • /
    • 2023
  • In this study, the stress characteristics of temporary fixed steel rods were analyzed in the "temporary fixing system using internal prestressing tension", which is mainly applied to the construction of superstructures by FCM. It was difficult to confirm the changes in initial tensile force in this system because the steel rod was internally connected to the pier and the PSC BOX. Therefore, measurement was performed before and after the completion of each segment using an FBG sensor to measure the change in the micro length of the steel rod. The results of the analysis showed that 75% to 90% of the maximum vertical contraction of the steel rod that occurred until the completion of the cantilever segment occurred in the fixing ~ 1segment, and the maximum loss of initial prestressing force was 39%. Such excessive loss of tension force to 1 segment means that tension is needed to improve the precision of construction during the fixation, and re-tension is needed to secure stability for conduction of cantilever segments after the completion of 1segment. In the 2 ~ last segment, the stress of the steel rod decreased gradually, and in the summer, the decrease in stress tended to partially recover due to the increase in the length of the steel rod corresponding to the increase in the vertical volume of PSC BOX. The dominant factor in the stress change in 2~ last segment in this phenomenon is judged to be the change in the length of the steel rod according to the temperature. Unlike the change in length, the relaxation was 1.2-2.7%, which was mostly offset by the opposite stress corresponding to the temperature stress. Therefore, a plan was proposed to improve the internal stress, such as adjusting the fixation time.

Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence (인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발)

  • Siuk Kim;Eunseok Kim;Cheekyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.

Effect of a Aggregate Moisture Content on Aggregate Gradation Analysis (비 절건상태 골재의 함수비가 골재입도분석 결과에 미치는 영향)

  • Kim, Nam-ho;Ji, Hyeong-jun;Yang, Hong-seok;Jeon, Sun-je
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.559-566
    • /
    • 2021
  • The aggregate gradation analysis is a study that evaluates the accuracy of a specific purpose for the aggregate gradation analysis results essential for construction-related major education. This study is to evaluate the effect of aggregate moisture content on aggregate gradation analysis. The change in the moisture content of the aggregate stored in the asphalt plant cold bin and stock piles was monitored for one year, and based on the results, a sample of aggregate with different moisture content was produced. The gradation curve for each aggregate sample was analyzed to evaluate the effect of aggregate moisture content on aggregate gradation analysis. As a result of the gradation evaluation, it was confirmed that as the moisture content increased, the particle size error for particles less than 5 mm increased in the gradation analysis of the oven-dried aggregate, and this error increased as the particle size decreased. In addition, for aggregate particles of 5 mm or more, it was confirmed that the error in gradation analysis rapidly decreased due to the increase in the moisture content. An analysis was performed on the effect of the error in gradation analysis on the management of hot-bin aggregates in asphalt plants. As a result of the analysis, it was found that the minimum aggregate size of the first hot-bin in a general asphalt plant was 2.38 mm or more, so the maximum gradation error due to the non oven-dry aggregate was less than 2%. Therefore, it seems possible to use the results of the gradation analysis of cold bin non oven-dry aggregate for quality management of asphalt mixture production.

A Study on the Effectiveness of the 4th Industrial Technology Application for School Building Construction Work (학교건물 시공을 위한 4차 산업기술 적용의 효과성에 대한 연구)

  • Min, Kyung-Suk
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.19 no.4
    • /
    • pp.78-87
    • /
    • 2020
  • This study proposed the basic data that contributes to inducing an effective construction plan through the application of the 4th industrial technology to construct a school building that can guarantee the five goals of construction management: cost, process, quality, safety, and environmental management. To this end, 3D printing, drones, robot automation, and augmented reality technologies that are highly usable in construction sites were identified for construction workers. As part of this, related literature and research data were investigated. The selected 4th industrial technology was investigated and analyzed on how it was used for cost, process, quality, safety, and environmental management in a detailed school construction process. As a result of the analysis, significant results were found for the application plan of the 4th industrial technology in school construction for cost, process, quality, safety, and environmental management.

Effect of Hooked-end Steel Fiber Volume Fraction and Aspect Ratio on Flexural and Compressive Properties of Concrete (후크형 강섬유 혼입율 및 형상비에 따른 콘크리트의 휨 및 압축 특성)

  • Kim, Dong-Hui;Jang, Seok-Joon;Kim, Sun-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.40-47
    • /
    • 2021
  • This study investigates the influence of hooked-end steel fiber volume fraction and aspect ratio on the mechanical properties, such as compressive and flexural performance, of concrete with specified compressive strength of 30MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were selected. The flexural tests of steel fiber reinforced concrete (SFRC) prismatic specimens were conducted according to EN 14651. The compressive performance of SFRC with different volume fractions (0.25, 0.50 and 0.75%) were evaluated through standard compressive strength test method (KS F 2405). Experimental results indicated that the flexural strength, flexural toughness, fracture energy of concrete were improved as steel fiber volume fraction increases but there is no unique relationship between steel fiber volume fraction and compressive performance. The flexural and compressive properties of concrete incorporating hooked-end steel fiber with aspect ratio of 64 and 80 are a little better than those of SFRC with aspect ratio of 67. For each SFRC mixture used in the study, the residual flexural tensile strength ratio defined in Model Code 2010 was more than the limit value to be able to substitute rebar or welded mesh in structural members with the fiber reinforcement.

Effect of Paddy BMPs on Water Quality and Policy Consideration in Saemangeum Watershed (새만금 유역에서 논 최적관리기법의 수질개선 효과와 정책고려사항)

  • Kim, Jonggun;Lee, Suin;Shin, Jae-young;Lim, Jung-ha;Na, Young-kwang;Joo, Sohee;Shin, Minhwan;Choi, Joongdae
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.304-313
    • /
    • 2018
  • Agricultural land reclamation in Saemangeum tidal land project is mostly planned to be completed by 2020. Irrigation water for the land is required to be prepared by that time. However, water quality for the irrigation sources is barely meet the target concentration. This paper described the reduction effect of and policy consideration for best management practices (BMPs) which were fertilizer prescription by soil test (SO#1), mixed application of SO#1 and 3 (SO#2), drainage gate control (SO#3), time-release fertilizer application (SO#4), and control (CT). Reduction of paddy runoff was relatively higher in SO#3 (25%) and SO#1 (27%) while lower in SO#4 (9%) and SO#2 (7%) than that in CT. In addition, farmers promised to follow the BMP guidelines but they didn't because of the several problems caused for the BMPs implementation. Thus, it recommended developing an automated control of irrigation gate and paddy water depth and supporing farmers for NPS pollution control and irrigation water reduction.

Analysis of Safety Management Operations of Fire Risk Factors in Small-Scale Construction Sites (소규모 건설현장 화재 위험요인 안전관리 운영실태 분석)

  • Moon, Pil-Jae;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.775-785
    • /
    • 2022
  • By analyzing the operation status of fire safety management of small construction site workers, deriving problems, and suggesting improvement measures, this study was conducted to present practical basic data for their efficient use in the future, and the following conclusions were drawn. First, it was analyzed that small construction site workers are elderly in the age group of construction workers, have short construction skills, most of the jobs are working in the construction industry, and the employment type is non-regular workers. Second, the fire safety management improvement plan of small construction site workers is systematized, fire safety manager is deployed to manage fire risk, fire escape routes and emergency warning facilities are provided to inform all workers at the construction site. In addition, measures to reduce industrial accidents are needed through realistic evacuation training, fire VR training, and interesting educational programs.

The Factors Affecting the Health Preservation of Building Workers (빌딩관리업(FM)종사자 보건의 질에 영향을 미치는 요인)

  • Kim, Jung-Hoon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.233-234
    • /
    • 2022
  • 본 연구에서는 빌딩 시설물 관리를 시행함에 있어 현행 보건환경에 영향을 미치는 보건관리 요인인 보건관리자 고용, 사전보건교육, 개인위생장구 지급, 물질안전보건자료 관리, 석면보건관리, 공조시설 관리 등이 보건의 질에 미치는 영향을 통해 실질적이고 효과적인 빌딩 시설물 관리에서의 쾌적한 보건환경 확보를 목적으로 실시하였다.

  • PDF

Benchmarking Highway Maintenance Practices for Standardized Guideline Development (도로공사 유지관리 표준화 절차 개발을 위한 벤치마킹)

  • Ha, Minhui;Kim, Donghee;Shin, Hochul;Choi, Jaehyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.44-56
    • /
    • 2019
  • Recently, the paradigm of SOC investment has shifted from new construction to maintenance. This shift became more important for the highway system because it is as one of the most important SOC. In Korea, highway maintenance costs are about 20% of the total annual highway construction budget, which is about two-thirds of developed countries. In addition, establishing standardized guidelines for the highway maintenance operation is not in place. Therefore, in order for domestic road construction and maintenance technology to secure competitiveness in the global construction market, it is urgent to improve the management capacity for maintenance as well as the technology and management capacity. This study examines highway maintenance practices in OECD countries such as North America, Europe, Australia, New Zealand, and Japan to identify core elements of highway maintenance practice. It is imperative to establish a comprehensive management system based upon asset management principle. Even if the budget for the highway construction is reduced, investment in maintenance needs to be maintained.

A Survey of Perception Differences Among University Students, Professors, and Practitioners on the Construction Technologies in the Fourth Industrial Revolution (4차산업혁명 건설기술에 대한 학생, 교수, 실무종사자 인식차이 조사)

  • Kim, Tae Wan;Park, Seonghun;Choi, Byungjoo;Kang, Youngcheol;Park, Kyungmo;Jeong, WoonSeong;Koo, Choongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2022
  • Recently, the fourth industrial revolution has a great influence on the development of many industries as well as the construction industry. Various technologies related to the industrial revolution 4.0, such as AI and big data, have gained much attention. However, little has been known about the importance and preparedness of stakeholders of the construction industry in Korea for the industry 4.0 technologies so far. This study revealed how the stakeholders perceive and prepare for industry 4.0 using a survey. In addition, collaboration potential score for each technology was calculated to find technologies with high potential for collaboration. Result is that the importance of the technologies was evaluated high in overall, but the preparedness and implementation in university education or business was evaluated low. Technologies with high potential for industry-university collaboration are AI/big data and 3D printing/3D scanning. This study can contribute to the training of industry 4.0 experts and improving preparedness, which would enable the innovation and application of industry 4.0 technologies in the construction industry.