• Title/Summary/Keyword: 건물 열적 성능

Search Result 18, Processing Time 0.021 seconds

An Investigation into the Building's Thermal Mass Effect on the Variation of Indoor Temperature (건물의 축열질량이 실내기온 변화에 미치는 영향 평가)

  • Chun, Won-Gee;Jeon, Myung-Seok
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.72-80
    • /
    • 1992
  • This paper is concerned with the accurate estimation of the thermal mass effect on the variation of indoor temperature for residential buildings. To carry out the analysis here, the method called "PSTAR(Primary and Secondary Terms Analysis and Renormalization)" has been extensively used. This method was originally developed by the National Renewable Energy Laboratory(NREL) in the United States. The test results reported here represent two extreme cases of the interior thermal mass, which demonstrate its effect on the interior thermal environment as well as on the overall thermal behavior of the building structure. The monthly heating and cooling loads are also extrapolated by using the renormalized model, which are crucial in designing and refurbishing HVAC systems for the building.

  • PDF

전력부하 평준화를 위한 축냉시스템 개발

  • 최병윤;유제인;윤재호
    • 전기의세계
    • /
    • v.44 no.6
    • /
    • pp.19-26
    • /
    • 1995
  • 1992년 12월부터 일정규모 이상의 건물에 대한 절전설비의 설치 의무화가 시행되면서 국내에서의 빙축열시스템 보급이 크게 확대될 것으로 전망된다. 그러나 현재 국내에 도입되어 설치되는 빙축열시스템은 외국으로부터의 기술도입이나 완제품으로 수입되는 제품들이 대부분이며 빙축열시스템 사업에 참여하고자 하는 기업들 역시 수입을 검토하고 있는 실정이다. 그러므로 열적성능이 뛰어나고 시스템의 효율적인 운용이 가능하며 경제적으로 우위에 있는 빙축열시스템을 국산화 개발하는 것은 매우 중요하리라 사료된다. 이러한 필요성에 의하여 본 연구원의 냉동공조연구팀은 포접화합물과 공융염을 이용한 두가지의 새로운 빙축열시스템을 개발하였으며, 열적 성능이 뛰어나 원활한 전력에너지 수급과 수입 대체 및 수출을 통한 기업의 국제 경쟁력 향상을 꾀할 수 있을 것으로 사료된다.

  • PDF

Development of PV/T for Performance Improvement of Photovoltaic System (태양광 발전의 성능향상을 위한 PV/T 시스템 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.173-181
    • /
    • 2011
  • This paper proposes photovoltaic thermal hybrid module to get the electrical and thermal performance of building integrated photovoltaic(BIPV) system. BIPV system is decreased the system efficiency because output of PV is decreased by the thermal rising on generating. In order to improve the efficiency of BIPV module, water cooling system is applied and generated thermal is used the warm water system. Water cooling system uses the flux control algorithm considering water temperature and power loss. Electrical and thermal performance of proposed photovoltaic thermal hybrid module is confirmed through the actual experiment and herby proved the valid of this paper.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Application of the PSTAR Method to a Thermally Massive Passive Solar House (PSTAR기법을 이용한 자연형 주택의 열 성능 연구)

  • Jeon, Hong-Seok;Chun, Won-Gee
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 1991
  • This paper reports the application of the PSTAR(Primary and Secondary Terms Analysis and Henormalization) method to a thermally massive passive solar house located in Daejeon, Korea. The house has approximately $156m^2$ of living area with 3 bedrooms and a living room, which embodies many passive solar features for energy conservation. The primary concern of this work was to properly evaluate the thermal behavior of a thermally massive building structure using the PSTAR method. Results show close agreements between the measured and renormalized values in most cases in which the simulation results from the audit description of the house deviate somewhat considerably.

  • PDF

Properties of Foamed Concrete According to Types and Concentrations of Foam Agent (기포제 종류 및 희석 농도에 따른 기포 콘크리트의 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Hwang, Eui-Hwan;Shin, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • Recently, the government has been working feverously to save energy and reduce greenhouse gas emission by enacting Basic Act on Low Carbon Green Growth at the national level. Improving the insulation performance of building exterior and insulator can reduce the energy in the building sector. This study is about developing light-weight foamed concrete insulation panel that can be applied to buildings to save energy and to find the optimal condition for the development of insulation materials that can save energy by enhancing its physical, kinetic and thermal characteristics. Various experimental factors and conditions were considered in the study such as foam agent types (AES=Alcohol Ethoxy Sulfate, AOS=Alpha-Olefin Sulfonate, VS=Vegetable Soap, FP=Fe-Protein), foam agent dilution concentration (1, 3, 5%), and foam percentage (30, 50, 70%). Experiment results indicated that the surface tension of aqueous solution including foam agent, was lower when AOS was used over other foam agents. FP produced relatively stable foams in 3% or more, which produced unstable foams containing high water content and low surface tension when diluted at low concentration. Depending on foam agent types, compressive strength and thermal conductivity were similar at low density range but showed some differences at high concentration range. In addition, when concentrations of foam agent and foaming ratio increased, pore size increased and open pores are formed. In all types of foam agent, thermal conductivity were excellent, satisfying KS standards. The most outstanding performance for insulation panel was obtained when FP 3% was used.

Study on the Energy Saving for School Buildings - through thermal effect of the transparent insulated opaque envelopes - (학교건물의 에너지 절약에 관한 연구 - 투명 단열외피의 열적성능을 중심으로 -)

  • Lee, S.;Kim, S.H.;Kim, K.C.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2006
  • The thermal effect of a transparent insulated opake wall with solar energy was investigated theoretically. The heat gain through transparent insulated opake wall was studied for relative simple conditions. The stationary heat transport effect was studied for layer which is built on the opake wall. This study shows that a relative low solar radiation intensity causes a great heat reduction through the transparent insulated opake wall.

  • PDF

An Experimental Study on Thermal and Environmental Characteristics of Various Heating Systems in the Residential House (주거용 건물의 난방 방식별 열적성능 및 실내환경 특성 평가를 위한 실험적 연구)

  • Lee, Choong-Kook;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.121-128
    • /
    • 2005
  • This is about experimental comparison study between convective heating and radiation heating system to use the design criteria for residential house. Experiment was done in EC(environment chamber) under simultaneous outdoor condition for 4 kinds of heating system such as CRHP(Ceiling Radiant Heating Panel), BEHC( Bottom Electric Heating Coil Mat), EFCU( Electric Fan Coil Unit) and CEHU( Convective Electric Heating Unit). Result show that CRHP ,which is radiation heating system, can consume more 23% energy than convective heating system when it is operated by dry bulb temperature but can save 1 ${\sim}$ 10% when operated by glove temperature and 27% when operated by MRT.

  • PDF

Comparison of Rooftop Surface Temperature and Indoor Temperature for the Evaluation of Cool Roof Performance according to the Rooftop Colors in Summer: Using Thermal Infrared Camera Mounted on UAV (옥상 색상에 따른 쿨루프 성능평가를 위한 여름철 옥상 표면 및 실내온도 비교 분석 : 무인항공기에 장착된 열적외선 카메라를 이용하여)

  • Lee, Ki Rim;Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • The intensity and the number of days of high temperature occurrence are also high and record heat occurred. In addition, the global warming phenomenon is intensifying globally, and especially in South Korea, the urban heat island phenomenon is also occurring due to rapid urbanization due to rapid industrial development. As the temperature of the city rises, it causes problems such as the comfort of the residential living and the cooling load. In this study, the cool roof performance is evaluated according to the roof color to reduce these problems. Unlike previous studies, UAV(Unmanned Aerial Vehicle) thermal infrared camera was used to obtain the surface temperature (white, grey, green, blue, brown, black) according to the rooftop color by remote sensing technique. As a result, the surface temperature of white color was $11{\sim}20^{\circ}C$ lower than other colors. Also air conditioning temperature of white color was $1.5{\sim}4.4^{\circ}C$ lower than other colors and the digital thermometer of white color was about $1.5{\sim}3.5^{\circ}C$ lower than other colors. It was confirmed that the white cool roof performance is the best, and the UAV and the thermal infrared camera can confirm the cool roof performa.

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.