• Title/Summary/Keyword: 건물면적

Search Result 680, Processing Time 0.024 seconds

Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo (온도처리가 비트와 쌈추의 생육과 생리활성 물질 함량에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Lee, Jun Gu
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • The consumption of leaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for "Ssam (vegetable wrap-up), eaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for asoned condiments inside several layers of young vegetable leaves. This study investigated the effect of air temperature on the growth and phytochemical contents of beet (Beta vulgaris L.) and Ssamchoo (Brassica lee L. ssp. namai) grown in a closed-type plant factory system where fluorescent lamps were used as an artificial light source. Seeds of beet and Ssamchoo were sown in a peat-lite germination mix. The roots of 20-day-old seedlings were washed, and the seedlings were planted on a styrofoam board and grown in hydroponic beds for 25 days under fluorescent light. Plants were exposed to one of three different air temperature regimes (20, 25 and $30^{\circ}C$ during the day combined with $18^{\circ}C$ during the night), which were monitored with a sensor at 30 cm above the plant canopy. Increased plant height and leaf area were observed in beet at $25^{\circ}C$ and $30^{\circ}C$ compared to $20^{\circ}C$. For Ssamchoo, the greatest plant height, leaf area, fresh weight and dry weight were obtained at $20^{\circ}C$. Ascorbic acid content of beet and Ssamchoo leaves were highest at $30^{\circ}C$. In beet, total polyphenol and flavonoid contents were higher at $20^{\circ}C$ (42.4, $197.0mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (46.9, $217.0mg{\cdot}g^{-1}DW$) than $30^{\circ}C$ (22.4, $88.0mg{\cdot}g^{-1}DW$). In Ssamchoo, total polyphenol and flavonoid contents were also higher at $20^{\circ}C$ (79.2, $268.2mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (66.3, $258.3mg{\cdot}g^{-1}DW$), respectively, than $30^{\circ}C$ (53.7, $134.7mg{\cdot}g^{-1}DW$). Hence, the optimum temperature appears to be $20^{\circ}C$ for growing both beet and Ssamchoo in a closed-type plant factory system with fluorescent light.

Growth and Phytochemicals of Lettuce as Affected by Light Quality of Discharge Lamps (방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석)

  • Lee, Jae Su;Nam, Sang Woon;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.400-407
    • /
    • 2013
  • This study was performed to analyze the effect of light quality of discharge lamp on growth and phytochemicals contents of lettuce (Lactuca sativa L. cv. Jeokchima) grown under metal halide (MH) lamp, high-pressure sodium (HPS) lamp, and xenon (XE) lamp in a plant factory. Cool-white fluorescent (FL) lamp was used as the control. Photoperiod, air temperature, relative humidity, $CO_2$ concentration, and photosynthetic photon flux (PPF) in a plant factory were 16/8 h (day/night), $22/18^{\circ}C$, 70%, 400 ${\mu}mol{\cdot}mol^{-1}$, and 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. MH lamp had the greatest fraction of blue light (400-500 nm) of 23.0%. However, HPS lamp had the lowest fraction of 4.7% for blue light and the greatest fraction of 38.0% for red light (600-700 nm). At 11 and 21 days after transplanting, leaf length, leaf width, leaf area, shoot fresh weight, and shoot dry weight of lettuce as affected by the light quality of the discharge lamp were significantly different. The leaf area of lettuce grown under HPS, MH, and XE lamp increased by 45.7%, 16.3%, and 9.5%, respectively, as compared to the control. These results were similar for shoot fresh weight. Growth characteristics of lettuce grown under HPS lamp increased since HPS lamp had more fraction of red light. However, growth of lettuce grown under MH and XE lamp decreased since they had more fraction of blue light. As compared to the control, the ascorbic acid in lettuce leaves grown under discharge lamp decreased. The greatest anthocyanins accumulation of 0.70 mg/100 g was found at MH treatment. Anthocyanins content in lettuce leaves grown under XL and HPS lamp were 79.3% and 8.6%, respectively, compared with the control. Growth and phytochemicals contents of lettuce were highly affected by the different spectral distribution of the discharge lamp. These results indicate that the combination of discharge lamp or LED lamp for enhancing the light quality of discharge lamps is required to increase the growth and phytochemicals accumulation of lettuce in controlled environment such as plant factory.

Policies for Improving Thermal Environment Using Vulnerability Assessment - A Case Study of Daegu, Korea - (열취약성 평가를 통한 열환경 개선 정책 제시 - 대구광역시를 사례로 -)

  • KIM, Kwon;EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.1-23
    • /
    • 2018
  • This study aims to propose a way for evaluating thermal environment vulnerability associated with policy to improve thermal environment. For this purpose, a variety of indices concerning thermal vulnerability assessment and adaptation policies for climate change applied to 17 Korean cities were reviewed and examined. Finally, 15 indices associated with policies for improving thermal environment were selected. The selected indices for thermal vulnerability assessment were applied to Daegu Metropolitan City of South Korea as a case study. As results, 15 vulnerability maps based on the standardized indices were established, and a comprehensive map with four grades of thermal vulnerability were established for Daegu Metropolitan City. As results, the area with the highest rated area in the first-grade(most vulnerable to heat) was Dong-gu, followed by Dalseo-gu and Buk-gu, and the highest area ratio of the first-grade regions was Ansim-1-dong in Dong-gu. Based on the standardized indices, the causes of the thermal environment vulnerability of Ansim-1-dong were accounted for the number of basic livelihood security recipients, the number of cardiovascular disease deaths, heat index, and Earth's surface temperature. To improve the thermal environment vulnerability of Ansim-1-dong, active policy implementation is required in expansion and maintenance of heat wave shelters, establishment of database for the population with diseases susceptible to high temperature environments, expansion of shade areas and so on. This study shows the applicability of the vulnerability assessment method linked with the policies and is expected to contribute to the strategic and effective establishment of thermal environment policies in urban master district plans.

Impact of Elevated Temperature in Growing Season on Growth and Fruit Quality of Red Pepper (Capsicum annuum L.) (생육기 온도상승이 고추의 생육 및 과실품질에 미치는 영향)

  • Song, Eun Young;Moon, Kyung Hwan;Son, In Chang;Kim, Chun Hwan;Lim, Chan Kyu;Son, Daniel;Oh, Soonja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.349-358
    • /
    • 2014
  • This study was conducted to determine the impact of elevated temperature in growing season on the growth and fruit quality of red pepper (Capsicum annuum L.) by cultivating pepper in the temperature gradient tunnels. Plant height, stem diameter, leaf number and total leaf area, fresh weight and dry weight increased at ambient $+2^{\circ}C$ temperature, whereas each leaf area decreased as temperature increased. The plants grown under ambient $+2^{\circ}C$ temperature showed the greatest number of flower and fruit. Fruit weight, fruit length and fruit diameter decreased as the temperature increasing gradually. Total fruit number, total fruit weight and total dry fruit weight was the highest at ambient $+2^{\circ}C$ temperature. Major free sugars of red pepper fruit were fructose and glucose. Free sugar content of red pepper according to the differences in harvesting times and in growth temperature showed a little differences. The yield of red pepper fruit at ambient $+2^{\circ}C$ temperature increased by 13% compared with the control. However, the yield of red pepper fruit at ambient $+4^{\circ}C$ temperature decreased by 20% as compared to control. Non-marketable fruits (diseased fruit, malformed fruit and small sized fruit) increased as the temperature rised.

Influence of Various Root Media in Pot Growth of 'Seolhyang' Strawberry on the Growth of Daughter Plants and Early Yield after Transplant ('설향' 딸기 포트육묘를 위한 혼합상토 종류가 자묘의 생육과 정식 후 초기수량에 미치는 영향)

  • Park, Gab Soon;Kim, Yeoung Chil;Ann, Seoung Won;Kang, Hee Kyoung;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.219-226
    • /
    • 2015
  • The objective of this research was to investigate the influence of various root media on the growth of mother and daughter plants during propagation and early yield after transplanting of 'Seolhyang' strawberry. To achieve this, daughter plants were fixed to connected small pots that contained expanded rice-hull (ERH), a strawberry-specialized commercial medium (SSCM), soil mother materials (SMM), or loamy sand (LS). Then, growth of daughter plants in above- and below-ground tissue as well as early yield after transplanting to plastic house soil were investigated. The growth of daughter plants in terms of plant height, leaf area and fresh weight were the highest in the SSCM treatment. Root growth in terms of the amount of primary roots and root dry weight were the highest in the treatments of ERH and SMM and the lowest in that of SSCM, among treatments tested. The ERH treatment also showed the highest values among treatments in root length, surface area and volume when roots with 0 to 0.4 mm in diameter were investigated. The flower bud differentiation of daughter plants began on Sept. 3 in the ERH treatments, earlier than the SMM (Sept. 5) and in SSCM (Sept. 7) treatments. The tissue N contents of daughter plants were in the range of 1.41 to 1.55% in all treatments, and no significant differences were observed among treatments. This indicates that the low moisture retention capacity of ERH and water stress, rather than tissue N contents, promote the flower differentiation of daughter plants. In the evaluation of early yield after transplant, the ERH treatment of showed the highest yield in the period from November to December, reaching 667 g fruit weight per 10 plants. The yields per 10 plants in the other treatments were 581 g in SMM, 475 g in SSCM and 295 g in LS. Above results imply that the various root media have different effects on the growth of daughter plants as well as flower bud differentiation. Therefore, improvement in early yield after transplant can be achieved through selection of proper root medium for daughter plant propagation.

Studies on the drought resistance of mulberry trees (상수의 내건성에 관한 연구)

  • 김문협
    • Journal of Sericultural and Entomological Science
    • /
    • v.7
    • /
    • pp.1-26
    • /
    • 1967
  • In order to develop the standards for the measurement of drought resistance in mulberry trees (Morus genus) the varietal differences of drought resistance were measured for 30 mulberry varieties, and the relationships between the drought resistance and the histological and physiological characteristics of mulberry leaves were investigated. The results were summarized as follows; 1. It is reasonable to use the drought resistance ratio, expressed by D/D'*100, for the standard of drought resistance measurement for mulberry tree as a perennial tree crop. Where: D stands for growth amount(shoot length) in the plot of dry treatment, at the end of treatment. D' stands for an expected value of D which is expressed by B*C/A. Here, A is the growth amount of wet treatment plot at the beginning of treatment, B is the growth amount of dry treatment plot at the beginning of treatment, and C is the growth amount of wet treatment plot at the end of treatment. 2. The results obtained from the application of above formula showed that the varieties Cadaneo, Tahozosaeng, Yongchunchuwu, Kaeryang suban. and Kabsun were highly resistant to drought and the varieties Jukmok, Shipyung, Sobun, Kaeryangzosaeng shipmoonza and Chungagokyo were highly susceptible. 3. Among leaf tissues. the rate of inter-cellular space showed the highest relationship with drought resistance. The correlation coefficient calculated (r=0.4153) was highly significant. Other leaf tissues such as epidermis and palisade showed no significant correlations with drought resistance. 4. The size and density of stomata were correlated to drought resistance. That is: Correlation between drought resistance and size of stomata(length ${\times}$ width)......r= -0. 3253(signif. at 5%) density(No. of stomata/l$\textrm{mm}^2$......r= +0.5047(signif. at 1%)

  • PDF

Germination and Growth of Codonopsis lanceolata and Astragalus membranaceus as Affected by Different Media Types during Seedling Period (배지 종류에 따른 더덕과 황기의 발아와 육묘기 생육)

  • Jeong, Hyeon Woo;Kim, Hyeon Min;Kim, Hye Min;Lee, Hye Ri;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • This study was conducted to examine the germination and growth during seedling period of Codonopsis lanceolata and Astragalus membranaceus as affected by different media. The seeds were sown in commercial medium (Tosilee), coir, rockwool, and urethane sponge. The seeds were germinated for 22 days in a closed-type plant production system, and seedlings were grown for 35 days after sowing in the venlo-type glasshouse located on Gyeongsang National University. Nutrient solution was supplied by the sub-irrigation as EC $1.0dS{\cdot}m^{-1}$ and pH 6.5 every second day. Final germination of Codonopsis lanceolata was the significantly highest in the coir and rockwool media as 68.5% and 67.9%, respectively. Mean daily germination was also the highest in the coir and rockwool media as 4.2 and 4.1, respectively. The germination rate of Astragalus membranaceus was not significantly difference in the media types. Plant height and leaf area of Codonopsis lanceolata were the significantly highest in the rockwool medium as 11.5 cm and $11.3cm^2$, respectively. Longest root length and fresh weight of root were the greatest in the coir medium as 5.8 cm and 0.07 g, respectively. Plant height and leaf area of Astragalus membranaceus were the significantly highest in the coir medium as 14.0 cm and $16.9cm^2$, respectively, and fresh and dry weights of root were the highest in the urethane sponge medium as 0.34 g and 0.03 g, respectively. Therefore, these result suggest that the rockwool and coir media were suitable for the germination and growth during seedling period of Codonopsis lanceolata and Astraglus membranaceus.

Effect of Root-Zone Temperature in Hydroponics on Plant Growth and Nutrient Uptake in Vegetable Crops (수경재배(水耕栽培)에서 양액온도(養液溫度)가 채소작물(菜蔬作物)의 생장(生長) 및 무기양분흡수(無機養分吸收)에 미치는 영향(影響))

  • Jang, Byoung-Choon;Hong, Young-Pyo;Chun, Jae-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 1992
  • This study was carried out to investigate the effects of root-zone temperature in hydroponics on the plant growth and nutrient uptake of lettuce(Lactuca sativa L), tomato (Lycopersicon esculentum Mill), and cucumber (Cucumis sativus L). Respiration rate in roots increased with increase in root-zone temperature. At $10^{\circ}C$ of root-zone temperature, respiration rate in lettuce root was higher than those in tomato and cucumber. Increasing rate of root respiration in tomato with increase in root-zone temperature was greater than those in lettuce and cucumber. The lowest dry weight and leaf area of the crops studied were obtained at $10^{\circ}C$ of root-zone temperature, but they were not different between 20 and $30^{\circ}C$. Increase in root-zone temperature generally resulted in increase in T/R ratio and net assimilation rate. At the low root-zone temperature, root growth and leaf area of tomato and cucumber were severely affected. Relative growth rates of lettuce and cucumber were also greatly reduced by the low root-zone temperature. Contents of N, P, K, Ca, and Mg in the crops increased as root-zone temperature increased from 10 to $20^{\circ}C$, whereas only Ca content in tomato and cucumber increased with increase in root-zone temperature to $30^{\circ}C$. Remarkably low contents of P and Mg in the crops were found at the low root-zone temperature. Inhibition of plant growth and nutrient uptake due to low root-zone temperature was much greater in cucumber than in lettuce and tomato.

  • PDF

Effect of Soil Water Content on Growth, Photosynthetic Rate, and Stomatal Conductance of Kimchi Cabbage at the Early Growth Stage after Transplanting (정식 후 초기 생장기 배추의 생장, 광합성 속도 및 기공전도도에 미치는 토양수분의 영향)

  • Kim, Sung Kyeom;Lee, Hee Ju;Lee, Hee Su;Mun, Boheum;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.151-157
    • /
    • 2017
  • The objectives of this study were to determine the impact of soil water content on the growth, stomatal conductance, and photosynthesis of Kimchi cabbage and to evaluate proper parameters for development of growth models. There were five levels of irrigation amount treatments (0, 200, 300, 400, and 500 mL/d/plant) and those were commenced at one day after transplanting (DAT). We measured soil water content, stomatal conductance, photosynthesis characteristics, and the A-Ci curve. The growth of Kimchi cabbage as affected by irrigation amount was evaluated at 38 days after transplanting, however, the growth with 0 and 200 mL/d/plant irrigation amount treatments measured at 29 DAT. The relationship between soil water content and stomatal conductance was highly correlated ($r^2=0.999$) and the function represented by y = 6097.4x - 4.2984. The stomatal conductance of Kimchi cabbage leaves showed $300mmol{\cdot}m^{-2}{\cdot}s^{-1}$ when the soil water content was below $0.05m^3/m^3$. The stomatal conductance was rapidly decreased by scarcity of soil moisture. A-Ci curve indicated normal curve in fully irrigation treatment (500 mL/d/plant), however, $CO_2$ couldn't diffuse through the intercellular Kimchi cabbage leaves treated with 0 mL/d/plant. The dry weight of full irrigation treatment was greater approximately 6.8 times than that of deficit irrigation (0 mL/d/plant). In addition, leaf area index showed a logarithmic function (y = 16.573 + 3.398 ln x) with soil water content and that of R-squared represents 0.913. Results indicated that the soil water content was highly correlated with stomatal conductance and leaf area index. Indeed, the scarcity soil moisture reduced photosynthesis and retarded growth.

Effects of Nutrient Strength and Light Intensity on Nutrient Uptake and Growth of Young Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Seedling Stage (배양액의 농도와 광강도가 단일처리전 칼랑코에 유묘의 양분흡수와 생육에 미치는 영향)

  • Lu, Yin-Ji;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2005
  • It is very important to make shorter and healthier pot plants with increased numbers of branch at a growing stage before short-day exposure. Especially light and nutrient conditions directly affect the growth and quality of the plants as described above. In this study, the effects of nutrient strength and light intensity on the nutrient uptake and growth of young Kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') during this growth stage were investigated. The plants were grown under two radiation integral (15.8 and 7.9 $mol{\cdot}m^{-2}{\cdot}d^{-1}$, PPF) and three EC (0.8, 1.6 and 2.4 $dS{\cdot}m^{-1}$) conditions. Leaf area, fresh weight, dry weight and number of branch were higher at a higher PPF, and this tendency was more evident at an EC above 1.6$dS{\cdot}m^{-1}$. The plants became higher at a lower PPF. When the EC was at 0.8 $dS{\cdot}m^{-1}$, the plants did not grow so healthy regardless of PPF conditions. EC decrement in the nutrient solution was increased with increase of nutrient strength. With growth stage, the nutrient uptake was increased with increases of nutrient strength and PPF. At a higher PPF, $NO_3-N,\;K^{+}\;and\;Ca^{2+}$ were much more absorbed, and especially the uptake of $K^{+}$ was 1.1 to 1.5 times greater than that or $NO_3-N$. From the results, the EC needed above 1.6 $dS{\cdot}m^{-1}$ during the seedling stage in order to make more healthy Kalanchoe plants having more leaf area, fresh weight, dry weight and number of branches under adequate light conditions.