• Title/Summary/Keyword: 객체 특징 추출

Search Result 421, Processing Time 0.032 seconds

A Hardware Design of Feature Detector for Realtime Processing of SIFT(Scale Invariant Feature Transform) Algorithm in Embedded Systems (임베디드 환경에서 SIFT 알고리즘의 실시간 처리를 위한 특징점 검출기의 하드웨어 구현)

  • Park, Chan-Il;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.86-95
    • /
    • 2009
  • SIFT is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vertices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3D image reconstructions and intelligent vision system for robots. In this paper, we implement a hardware to sift feature detection algorithm for real time processing in embedded systems. We estimate that the hardware implementation give a performance 25ms of $1,280{\times}960$ image and 5ms of $640{\times}480$ image at 100MHz. And the implemented hardware consumes 45,792 LUTs(85%) with Synplify 8.li synthesis tool.

CNN-ViT Hybrid Aesthetic Evaluation Model Based on Quantification of Cognitive Features in Images (이미지의 인지적 특징 정량화를 통한 CNN-ViT 하이브리드 미학 평가 모델)

  • Soo-Eun Kim;Joon-Shik Lim
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.352-359
    • /
    • 2024
  • This paper proposes a CNN-ViT hybrid model that automatically evaluates the aesthetic quality of images by combining local and global features. In this approach, CNN is used to extract local features such as color and object placement, while ViT is employed to analyze the aesthetic value of the image by reflecting global features. Color composition is derived by extracting the primary colors from the input image, creating a color palette, and then passing it through the CNN. The Rule of Thirds is quantified by calculating how closely objects in the image are positioned near the thirds intersection points. These values provide the model with critical information about the color balance and spatial harmony of the image. The model then analyzes the relationship between these factors to predict scores that align closely with human judgment. Experimental results on the AADB image database show that the proposed model achieved a Spearman's Rank Correlation Coefficient (SRCC) of 0.716, indicating more consistent rank predictions, and a Pearson Correlation Coefficient (LCC) of 0.72, which is 2~4% higher than existing models.

Images Grouping Technology based on Camera Sensors for Efficient Stitching of Multiple Images (다수의 영상간 효율적인 스티칭을 위한 카메라 센서 정보 기반 영상 그룹핑 기술)

  • Im, Jiheon;Lee, Euisang;Kim, Hoejung;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • Since the panoramic image can overcome the limitation of the viewing angle of the camera and have a wide field of view, it has been studied effectively in the fields of computer vision and stereo camera. In order to generate a panoramic image, stitching images taken by a plurality of general cameras instead of using a wide-angle camera, which is distorted, is widely used because it can reduce image distortion. The image stitching technique creates descriptors of feature points extracted from multiple images, compares the similarities of feature points, and links them together into one image. Each feature point has several hundreds of dimensions of information, and data processing time increases as more images are stitched. In particular, when a panorama is generated on the basis of an image photographed by a plurality of unspecified cameras with respect to an object, the extraction processing time of the overlapping feature points for similar images becomes longer. In this paper, we propose a preprocessing process to efficiently process stitching based on an image obtained from a number of unspecified cameras for one object or environment. In this way, the data processing time can be reduced by pre-grouping images based on camera sensor information and reducing the number of images to be stitched at one time. Later, stitching is done hierarchically to create one large panorama. Through the grouping preprocessing proposed in this paper, we confirmed that the stitching time for a large number of images is greatly reduced by experimental results.

Improved CS-RANSAC Algorithm Using K-Means Clustering (K-Means 클러스터링을 적용한 향상된 CS-RANSAC 알고리즘)

  • Ko, Seunghyun;Yoon, Ui-Nyoung;Alikhanov, Jumabek;Jo, Geun-Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.315-320
    • /
    • 2017
  • Estimating the correct pose of augmented objects on the real camera view efficiently is one of the most important questions in image tracking area. In computer vision, Homography is used for camera pose estimation in augmented reality system with markerless. To estimating Homography, several algorithm like SURF features which extracted from images are used. Based on extracted features, Homography is estimated. For this purpose, RANSAC algorithm is well used to estimate homography and DCS-RANSAC algorithm is researched which apply constraints dynamically based on Constraint Satisfaction Problem to improve performance. In DCS-RANSAC, however, the dataset is based on pattern of feature distribution of images manually, so this algorithm cannot classify the input image, pattern of feature distribution is not recognized in DCS-RANSAC algorithm, which lead to reduce it's performance. To improve this problem, we suggest the KCS-RANSAC algorithm using K-means clustering in CS-RANSAC to cluster the images automatically based on pattern of feature distribution and apply constraints to each image groups. The suggested algorithm cluster the images automatically and apply the constraints to each clustered image groups. The experiment result shows that our KCS-RANSAC algorithm outperformed the DCS-RANSAC algorithm in terms of speed, accuracy, and inlier rate.

Automatic 3D Object Digitizing and Its Accuracy Using Point Cloud Data (점군집 데이터에 의한 3차원 객체도화의 자동화와 정확도)

  • Yoo, Eun-Jin;Yun, Seong-Goo;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.

Object Detection Using Combined Random Fern for RGB-D Image Format (RGB-D 영상 포맷을 위한 결합형 무작위 Fern을 이용한 객체 검출)

  • Lim, Seung-Ouk;Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.9
    • /
    • pp.451-459
    • /
    • 2016
  • While an object detection algorithm plays a key role in many computer vision applications, it requires extensive computation to show robustness under varying lightning and geometrical distortions. Recently, some approaches formulate the problem in a classification framework and show improved performances in object recognition. Among them, random fern algorithm drew a lot of attention because of its simple structure and high recognition rates. However, it reveals performance degradation under the illumination changes and noise addition, since it computes patch features based only on pixel intensities. In this paper, we propose a new structure of combined random fern which incorporates depth information into the conventional random fern reflecting 3D structure of the patch. In addition, a new structure of object tracker which exploits the combined random fern is also introduced. Experiments show that the proposed method provides superior performance of object detection under illumination change and noisy condition compared to the conventional methods.

Design and Application of the TFM Based System Test Model for the Weapon System Embedded Software (무기체계 임베디드 소프트웨어에 대한 TFM 기반 시스템 테스트 모델 설계 및 적용)

  • Kim, Jae-Hwan;Yoon, Hee-Byung
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.923-930
    • /
    • 2006
  • In this paper we design the system test model for the weapon system embedded software based on the Time Factor Method(TFM) considering time factors and suggest the results through the case study. For doing this, we discuss the features, system tests and the object-oriented model based UML notations of the weapon system embedded software. And we give a test method considering time factors, a measuring method to time factors, and a test case selection algorithm as an approach to the TFM for designing the system test model. The TFM based system test model consists of three factors (X, Y, Z) in the weapon system embedded software. With this model, we can extract test cases through the selection algorithm for a maximum time path in 'X', identify the objects related to the Sequence Diagram in 'Y' and measure the execution time of each objects which is identified by the Timing Diagram in 'Z' Also, we present the method of extracting the system test cases by applying the proposed system test model to the 'Multi-function missile defense system'.

A Study on Rotating Object Classification using Deep Neural Networks (깊은신경망을 이용한 회전객체 분류 연구)

  • Lee, Yong-Kyu;Lee, Yill-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.425-430
    • /
    • 2015
  • This paper is a study to improve the classification efficiency of rotating objects by using deep neural networks to which a deep learning algorithm was applied. For the classification experiment of rotating objects, COIL-20 is used as data and total 3 types of classifiers are compared and analyzed. 3 types of classifiers used in the study include PCA classifier to derive a feature value while reducing the dimension of data by using Principal Component Analysis and classify by using euclidean distance, MLP classifier of the way of reducing the error energy by using error back-propagation algorithm and finally, deep learning applied DBN classifier of the way of increasing the probability of observing learning data through pre-training and reducing the error energy through fine-tuning. In order to identify the structure-specific error rate of the deep neural networks, the experiment is carried out while changing the number of hidden layers and number of hidden neurons. The classifier using DBN showed the lowest error rate. Its structure of deep neural networks with 2 hidden layers showed a high recognition rate by moving parameters to a location helpful for recognition.

Motion Parameter Estimation and Segmentation with Probabilistic Clustering (활률적 클러스터링에 의한 움직임 파라미터 추정과 세그맨테이션)

  • 정차근
    • Journal of Broadcast Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-60
    • /
    • 1998
  • This paper addresses a problem of extraction of parameteric motion estimation and structural motion segmentation for compact image sequence representation and object-based generic video coding. In order to extract meaningful motion structure from image sequences, a direct parameteric motion estimation based on a pre-segmentation is proposed. The pre-segmentation which considers the motion of the moving objects is canied out based on probabilistic clustering with mixture models using optical flow and image intensities. Parametric motion segmentation can be obtained by iterated estimation of motion model parameters and region reassignment according to a criterion using Gauss-Newton iterative optimization algorithm. The efficiency of the proposed methoo is verified with computer simulation using elF real image sequences.

  • PDF

RGB Channel Selection Technique for Efficient Image Segmentation (효율적인 이미지 분할을 위한 RGB 채널 선택 기법)

  • 김현종;박영배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1332-1344
    • /
    • 2004
  • Upon development of information super-highway and multimedia-related technoiogies in recent years, more efficient technologies to transmit, store and retrieve the multimedia data are required. Among such technologies, firstly, it is common that the semantic-based image retrieval is annotated separately in order to give certain meanings to the image data and the low-level property information that include information about color, texture, and shape Despite the fact that the semantic-based information retrieval has been made by utilizing such vocabulary dictionary as the key words that given, however it brings about a problem that has not yet freed from the limit of the existing keyword-based text information retrieval. The second problem is that it reveals a decreased retrieval performance in the content-based image retrieval system, and is difficult to separate the object from the image that has complex background, and also is difficult to extract an area due to excessive division of those regions. Further, it is difficult to separate the objects from the image that possesses multiple objects in complex scene. To solve the problems, in this paper, I established a content-based retrieval system that can be processed in 5 different steps. The most critical process of those 5 steps is that among RGB images, the one that has the largest and the smallest background are to be extracted. Particularly. I propose the method that extracts the subject as well as the background by using an Image, which has the largest background. Also, to solve the second problem, I propose the method in which multiple objects are separated using RGB channel selection techniques having optimized the excessive division of area by utilizing Watermerge's threshold value with the object separation using the method of RGB channels separation. The tests proved that the methods proposed by me were superior to the existing methods in terms of retrieval performances insomuch as to replace those methods that developed for the purpose of retrieving those complex objects that used to be difficult to retrieve up until now.