• Title/Summary/Keyword: 객체 특징 추출

Search Result 421, Processing Time 0.034 seconds

Moving Object Segmentation using Space-oriented Object Boundary Linking and Background Registration (공간기반 객체 외곽선 연결과 배경 저장을 사용한 움직이는 객체 분할)

  • Lee Ho Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.128-139
    • /
    • 2005
  • Moving object boundary is very important for moving object segmentation. But the moving object boundary shows broken boundary We invent a novel space-oriented boundary linking algorithm to link the broken boundary The boundary linking algorithm forms a quadrant around the terminating pixel in the broken boundary and searches forward other terminating pixel to link within a radius. The boundary linking algorithm guarantees shortest distance linking. We also register the background from image sequence. We construct two object masks, one from the result of boundary linking and the other from the registered background, and use these two complementary object masks together for moving object segmentation. We also suppress the moving cast shadow using Roberts gradient operator. The major advantages of the proposed algorithms are more accurate moving object segmentation and the segmentation of the object which has holes in its region using these two object masks. We experiment the algorithms using the standard MPEG-4 test sequences and real video sequence. The proposed algorithms are very efficient and can process QCIF image more than 48 fps and CIF image more than 19 fps using a 2.0GHz Pentium-4 computer.

GML Data Integration Method for Load Processing of Spatial Data Warehouse (공간 데이터 웨어하우스에서 GML 데이터의 효율적인 적재를 위한 데이터 통합 기법)

  • Jeon Byung-Yun;Lee Dong-Wook;You Byeong-Seob;Bae Hae-Young
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.27-30
    • /
    • 2006
  • GIS 분야에서 데이터 교환의 표준으로 OGC(Open Geospatial Consortium)에서 GML(Geography Markup Language)이 제안되어 웹 어플리케이션이나 공간 데이터 교환에서 사용이 일반화 되어가고 있다. 또한, 공간 데이터를 효과적으로 수집하여 의사결정을 지원하기 위한 시스템인 공간 데이터 웨어하우스에서도 GML 데이터를 추출하여 소스 데이터로 활용하는 것이 요구되고 있다. 하지만 GML 은 반구조형식(semi-structured)의 데이터 형식을 가진다. 따라서 기존 구조적인 데이터와는 추출하는 방식이 다르므로 GML 의 특징에 맞는 공간 데이터 추출이 수행되어야 한다. 본 논문에서는 공간 데이터 웨어하우스에서 GML 기반의 공간 데이터 소스를 추출할 때, 중복되는 공간 객체를 하나의 표현으로 통합하여 효율적으로 적재하는 기법을 제안한다. 이는 GQuery를 이용하여 GML 데이터를 추출한 후, GML 스키마를 메타데이터에서 관리하는 스키마 정보와 비교하여 공간 데이터 웨어하우스에 통합된 공간 데이터를 제공하는 기법이다. 성능평가에서는 기존의 GML 데이터를 추출하는 기법과 제안기법과의 비교를 통하여 제안 기법의 기존 기법에 비해 평균적으로 약 9.95%의 성능향상을 보였다.

  • PDF

A Dual-Structured Self-Attention for improving the Performance of Vision Transformers (비전 트랜스포머 성능향상을 위한 이중 구조 셀프 어텐션)

  • Kwang-Yeob Lee;Hwang-Hee Moon;Tae-Ryong Park
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.251-257
    • /
    • 2023
  • In this paper, we propose a dual-structured self-attention method that improves the lack of regional features of the vision transformer's self-attention. Vision Transformers, which are more computationally efficient than convolutional neural networks in object classification, object segmentation, and video image recognition, lack the ability to extract regional features relatively. To solve this problem, many studies are conducted based on Windows or Shift Windows, but these methods weaken the advantages of self-attention-based transformers by increasing computational complexity using multiple levels of encoders. This paper proposes a dual-structure self-attention using self-attention and neighborhood network to improve locality inductive bias compared to the existing method. The neighborhood network for extracting local context information provides a much simpler computational complexity than the window structure. CIFAR-10 and CIFAR-100 were used to compare the performance of the proposed dual-structure self-attention transformer and the existing transformer, and the experiment showed improvements of 0.63% and 1.57% in Top-1 accuracy, respectively.

Accident Detection System for Construction Sites Using Multiple Cameras and Object Detection (다중 카메라와 객체 탐지를 활용한 건설 현장 사고 감지 시스템)

  • Min hyung Kim;Min sung Kam;Ho sung Ryu;Jun hyeok Park;Min soo Jeon;Hyeong woo Choi;Jun-Ki Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.605-611
    • /
    • 2023
  • Accidents at construction sites have a very high rate of fatalities due to the nature of being prone to severe injury patients. In order to reduce the mortality rate of severely injury patients, quick response is required, and some systems that detect accidents using AI technology and cameras have been devised to respond quickly to accidents. However, since existing accident detection systems use only a single camera, there are blind spots, Thus, they cannot detect all accidents at a construction site. Therefore, in this paper, we present the system that minimizes the detection blind spot by using multiple cameras. Our implemented system extracts feature points from the images of multiple cameras with the YOLO-pose library, and inputs the extracted feature points to a Long Short Term Memory-based recurrent neural network in order to detect accidents. In our experimental result, we confirme that the proposed system shows high accuracy while minimizing detection blind spots by using multiple cameras.

Extraction of Intestinal Obstruction in X-Ray Images Using PCM (PCM 클러스터링을 이용한 X-Ray 영상에서 장폐색 추출)

  • Kim, Kwang Baek;Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1618-1624
    • /
    • 2020
  • Intestinal obstruction diagnosis method based on X-ray can affect objective diagnosis because it includes subjective factors of the examiner. Therefore, in this paper, a detection method of Intestinal Obstruction from X-Ray image using Hough transform and PCM is proposed. The proposed method uses Hough transform to detect straight lines from the extracted ROI of the intestinal obstruction X-Ray image and bowel obstruction is extracted by using air fluid level's morphological characteristic detected by the straight lines. Then, ROI is quantized by applying PCM clustering algorithm to the extracted ROI. From the quantized ROI, cluster group that includes bowel obstruction's characteristic is selected and small bowel regions are extracted by using object search from the selected cluster group. The proposed method of using PCM is applied to 30 X-Ray images of intestinal obstruction patients and setting the initial cluster number of PCM to 4 showed excellent performance in detection and the TPR was 81.47%.

3D Object Detection via Multi-Scale Feature Knowledge Distillation

  • Se-Gwon Cheon;Hyuk-Jin Shin;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.35-45
    • /
    • 2024
  • In this paper, we propose Multi-Scale Feature Knowledge Distillation for 3D Object Detection (M3KD), which extracting knowledge from the teacher model, and transfer to the student model consider with multi-scale feature map. To achieve this, we minimize L2 loss between feature maps at each pyramid level of the student model with the correspond teacher model so student model can mimic the teacher model backbone information which improves the overall accuracy of the student model. We apply the class logits knowledge distillation used in the image classification task, by allowing student model mimic the classification logits of the teacher model, to guide the student model to improve the detection accuracy. In KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) dataset, our M3KD (Multi-Scale Feature Knowledge Distillation for 3D Object Detection) student model achieves 30% inference speed improvement compared to the teacher model. Additionally, our method achieved an average improvement of 1.08% in 3D mean Average Precision (mAP) across all classes and difficulty levels compared to the baseline student model. Furthermore, when integrated with the latest knowledge distillation methods such as PKD and SemCKD, our approach achieved an additional 0.42% and 0.52% improvement in 3D mAP, respectively, further enhancing performance.

An Automatic Region-of-Interest Extraction based on Wavelet on Low DOF Image (피사계 심도가 낯은 이미지에서 웨이블릿 기반의 자동 관심 영역 추출)

  • Park, Sun-Hwa;Kang, Ki-Jun;Seo, Yeong-Geon;Lee, Bu-Kweon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.215-218
    • /
    • 2009
  • 본 논문에서는 웨이블릿 변환 된 고주파 서브밴드들의 에지 정보를 이용하여 관심 객체 영역을 고속으로 자동 검출해주는 새로운 알고리즘을 제안하였다. 제안된 방법에서는 에지정보를 이용하여 블록단위의 4-방향 객체 윤곽 탐색 알고리즘(4-DOBS)을 수행하여 관심객체를 검출한다. 전체 이미지는 $64{\times}64$ 또는 $32{\times}32$ 크기의 코드 블록으로 먼저 나누어지고, 각 코드 블록 내에 에지들이 있는지 없는지에 따라 관심 코드블록 또는 배경이 된다. 4-방향은 바깥쪽에서 이미지의 중앙으로 탐색하여 접근하며, 피사계 심도가 낮은 이미지는 중앙으로 갈수록 에지가 발견된다는 특징을 이용한다. 기존 방법들의 문제점 이였던 복잡한 필터링 과정과 영역병합 문제로 인한 높은 계산도를 상당히 개선시킬 수 있었다. 또한 블록 단위의 처리로 인하여 실시간 처리를 요하는 응용에서도 적용 가능 하였다.

  • PDF

Improved Multi-modal Network Using Dilated Convolution Pyramid Pooling (팽창된 합성곱 계층 연산 풀링을 이용한 멀티 모달 네트워크 성능 향상 방법)

  • Park, Jun-Young;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.84-86
    • /
    • 2018
  • 요즘 자율주행과 같은 최신 기술의 발전과 더불어 촬영된 영상 장면에 대한 깊이있는 이해가 필요하게 되었다. 특히, 기계학습 기술이 발전하면서 카메라로 찍은 영상에 대한 의미론적 분할 기술에 대한 연구도 활발히 진행되고 있다. FuseNet은 인코더-디코더 구조를 이용하여 장면 내에 있는 객체에 대한 의미론적 분할 기술을 적용할 수 있는 신경망 모델이다. FuseNet은 오직 RGB 입력을 받는 기존의 FCN보다 깊이정보까지 활용하여 RGB 정보를 기반으로 추출한 특징지도와의 요소합 연산을 통해 멀티 모달 구조를 구현했다. 의미론적 분할 연구에서는 객체의 전역 컨텍스트가 고려되는 것이 중요한데, 이를 위해 여러 계층을 깊게 쌓으면 연산량이 많아지는 단점이 있다. 이를 극복하기 위해서 기존의 합성곱 방식을 벗어나 새롭게 제안된 팽창 합성곱 연산(Dilated Convolution)을 이용하면 객체의 수용 영역이 효과적으로 넓어지고 연산량이 적어질 수 있다. 본 논문에서는 컨볼루션 연산의 새로운 방법론적 접근 중 하나인 팽창된 합성곱 연산을 이용해 의미론적 분할 연구에서 새로운 멀티 모달 네트워크의 성능 향상 방법을 적용하여 계층을 더 깊게 쌓지 않더라도 파라미터의 증가 없이 해상도를 유지하면서 네트워크의 전체 성능을 향상할 수 있는 최적화된 방법을 제안한다.

  • PDF

Efficient Sound Processing and Synthesis in VR Environment Using Curl Vector of Obstacle Object (장애물 객체의 회전 벡터를 이용한 VR 환경에서의 효율적인 음향 처리 및 합성)

  • Park, Seong-A;Park, Soyeon;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.369-372
    • /
    • 2022
  • 본 논문에서는 장애물 객체의 회전 벡터를 이용하여 VR 환경에서의 효율적으로 음향 처리 및 합성하는 방법을 제안한다. 현실에서 소리와 장애물이 있을 때, 소리는 장애물의 형태에 따라 퍼지면서 전파되는 형태를 보여준다. 이 같은 특징을 가상현실 환경에 유사하게 음향 처리하고자 하며 이를 위해 장애물 객체의 위치와 소리의 근원지 위치를 입력으로 소리의 전파 형태를 근사한다. 이때 모서리 부근에서 표현되는 소리의 회전을 계산하기 위해 장애물의 회전벡터(Curl vector)를 기반으로 소리의 회전을 추출하였으며, 장애물 형태를 컨볼루션(Convolution)하여 소리가 바깥 방향으로 전파되는 형태를 모델링한다. 또한, 장애물과 소리 벡터 사이의 거리, 소리 근원지와 소리 벡터 사이의 거리를 계산하여 소리의 크기를 감쇠 시켜 주며, 최종적으로 장애물 주변으로 퍼지는 벡터 모양인 외부벡터를 합성하여 장애물로부터 외부로 퍼지는 벡터의 방향을 설정한다. 본 논문에서 제안하는 방법을 이용한 소리는 장애물과의 거리와 형태를 고려하여 퍼지는 사운드 벡터 형태를 보여주며, 소리 위치에 따라 소리 감소 패턴이 변경되고, 장애물 모양에 따라 흐름이 조절되는 결과를 보여준다. 이 같은 실험은 실제 현실에서 소리가 장애물의 모양에 따라 나타나는 소리의 변화 및 패턴을 거의 유사하게 표현할 수 있다.

  • PDF

Prostate Object Extraction in Ultrasound Volume Using Wavelet Transform (초음파 볼륨에서 웨이브렛 변환을 이용한 전립선 객체 추출)

  • Oh Jong-Hwan;Kim Sang-Hyun;Kim Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.67-77
    • /
    • 2006
  • This thesis proposes an effi챠ent method for extracting a prostate volume from 3D ultrasound image by using wavelet transform and SVM classification. In the proposed method, a modulus image for each 2D slice is generated by averaging detail images of horizontal and vertical orientations at several scales, which has the sharpest local maxima and the lowest noise power compared to those of all single scales. Prostate contour vertices are determined accurately using a SVM classifier, where feature vectors are composed of intensity and texture moments investigated along radial lines. Experimental results show that the proposed method yields absolute mean distance of on average 1.89 pixels when the contours obtained manually by an expert are used as reference data.