• Title/Summary/Keyword: 객체 탐지 알고리즘

Search Result 173, Processing Time 0.029 seconds

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.

Object Detection From 3D Terrain Data Gener Ated by Laser Scanner of Intelligent Excavating System(IES) (굴삭 자동화를 위한 레이저 스캐너 기반의 3차원 객체 탐지 알고리즘의 개발)

  • Yoo, Hyun-Seok;Park, Ji-Woon;Choi, Youn-Nyung;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.130-141
    • /
    • 2011
  • The intelligent excavating system(IES), the development in South Korea of which has been underway since 2006, aims for the full-scale automation of the excavation process that includes a series of tasks such as movement, excavation and loading. The core elements to ensure the quality and safety of the automated excavation equipment include 3D modeling of terrain that surrounds the excavating robot and the technology for detecting objects accurately(i.e., for detecting the location of nearby loading trucks and humans as well as of obstacles positioned on the movement paths). Therefore the purpose of this research is to ensure the quality and safety of automated excavation detecting the objects surrounding the excavating robot via a 3D laser scanning system. In this paper, an algorithm for estimating the location, height, width, and shape of objects in the 3D-realized terrain that surrounds the location of the excavator was proposed. The performance of the algorithm was verified via tests in an actual earthwork field.

A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector (YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구)

  • Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.561-568
    • /
    • 2021
  • In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.

Design of Tracking By Detection Model Using Similarity Comparison Module (유사도 비교 모듈을 이용한 Tracking By Detection 모델 설계)

  • Hyun-Sung Yang;Se-Hoon Jung;Chun-Bo Sim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.509-511
    • /
    • 2023
  • 현대 컴퓨터 비전 분야에서는 객체 추적이 중요한 연구 주제 중 하나다. 기존 Tracking By Detection 방식은 실시간 추적 속도와 Tracklet을 유지할 수 있는 정보 전달의 한계를 가지고 있다. 본 연구에서는 유사도 비교 모듈을 기반으로 Tracking By Detection 모델을 설계하고자 한다. 탐지 모델은 Anchor를 사용하지 않는 CenterNet을 사용하고 탐지된 값에 유사도 비교 알고리즘을 적용하여 객체 탐지와 객체 추적을 동시에 수행하는 모델을 제안한다. 제안하는 방법은 Occlusion으로 인한 객체 정보 손실을 완화하고, 새로운 객체 및 장애물에 대해 강건할 것으로 사료된다.

Watershed Algorithm-Based RoI Reduction Techniques for Improving Ship Detection Accuracy in Satellite Imagery (인공 위성 사진 내 선박 탐지 정확도 향상을 위한 Watershed 알고리즘 기반 RoI 축소 기법)

  • Lee, Seung Jae;Yoon, Ji Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.311-318
    • /
    • 2021
  • Research has been ongoing to detect ships from offshore photographs for a variety of reasons, including maritime security, identifying international trends, and social scientific research. Due to the development of artificial intelligence, R-CNN models for object detection in photographs and images have emerged, and the performance of object detection has risen dramatically. Ship detection in offshore photographs using the R-CNN model has also begun to apply to satellite photography. However, satellite images project large areas, so various objects such as vehicles, landforms, and buildings are sometimes recognized as ships. In this paper, we propose a novel methodology to improve the performance of ship detection in satellite photographs using R-CNN series models. We separate land and sea via marker-based watershed algorithm and perform morphology operations to specify RoI one more time, then detect vessels using R-CNN family models on specific RoI to reduce typology. Using this method, we could reduce the misdetection rate by 80% compared to using only the Fast R-CNN.

Transfer Learning-based Object Detection Algorithm Using YOLO Network (YOLO 네트워크를 활용한 전이학습 기반 객체 탐지 알고리즘)

  • Lee, Donggu;Sun, Young-Ghyu;Kim, Soo-Hyun;Sim, Issac;Lee, Kye-San;Song, Myoung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.219-223
    • /
    • 2020
  • To guarantee AI model's prominent recognition rate and recognition precision, obtaining the large number of data is essential. In this paper, we propose transfer learning-based object detection algorithm for maintaining outstanding performance even when the volume of training data is small. Also, we proposed a tranfer learning network combining Resnet-50 and YOLO(You Only Look Once) network. The transfer learning network uses the Leeds Sports Pose dataset to train the network that detects the person who occupies the largest part of each images. Simulation results yield to detection rate as 84% and detection precision as 97%.

Study of a underpass inundation forecast using object detection model (객체탐지 모델을 활용한 지하차도 침수 예측 연구)

  • Oh, Byunghwa;Hwang, Seok Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.302-302
    • /
    • 2021
  • 지하차도의 경우 국지 및 돌발홍수가 발생할 경우 대부분 침수됨에도 불구하고 2020년 7월 23일 부산 지역에 밤사이 시간당 80mm가 넘는 폭우가 발생하면서 순식간에 지하차도 천장까지 물이 차면서 선제적인 차량 통제가 우선적으로 수행되지 못하여 미처 대피하지 못한 3명의 운전자 인명사고가 발생하였다. 수재해를 비롯한 재난 관리를 빠르게 수행하기 위해서는 기존의 정부 및 관주도 중심의 단방향의 재난 대응에서 벗어나 정형 데이터와 비정형 데이터를 총칭하는 빅데이터의 통합적 수집 및 분석을 수행이 필요하다. 본 연구에서는 부산지역의 지하차도와 인접한 지하터널 CCTV 자료(센서)를 통한 재난 발생 시 인명피해를 최소화 정보 제공을 위한 Object Detection(객체 탐지)연구를 수행하였다. 지하터널 침수가 발생한 부산지역의 CCTV 영상을 사용하였으며, 영상편집에 사용되는 CCTV 자료의 음성자료를 제거하는 인코딩을 통하여 불러오는 영상파일 용량파일 감소 효과를 볼 수 있었다. 지하차도에 진입하는 물체를 탐지하는 방법으로 YOLO(You Only Look Once)를 사용하였으며, YOLO는 가장 빠른 객체 탐지 알고리즘 중 하나이며 최신 GPU에서 초당 170프레임의 속도로 실행될 수 있는 YOLOv3 방법을 적용하였으며, 분류작업에서 보다 높은 Classification을 가지는 Darknet-53을 적용하였다. YOLOv3 방법은 기존 객체탐지 모델 보다 좀 더 빠르고 정확한 물체 탐지가 가능하며 또한 모델의 크기를 변경하기만 하면 다시 학습시키지 않아도 속도와 정확도를 쉽게 변경가능한 장점이 있다. CCTV에서 오전(일반), 오후(침수발생) 시점을 나눈 후 Car, Bus, Truck, 사람을 분류하는 YOLO 알고리즘을 적용하여 지하터널 인근 Object Detection을 실제 수행 하였으며, CCTV자료를 이용하여 실제 물체 탐지의 정확도가 높은 것을 확인하였다.

  • PDF

A Study on Efficient Vehicle Tracking System using Dynamic Programming Method (동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구)

  • Kwon, Hee-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.209-215
    • /
    • 2015
  • In the past, there have been many theory and algorithms for vehicle tracking. But the time complexity of many feature point matching methods for vehicle tracking are exponential. Also, object segmentation and detection algorithms presented for vehicle tracking are exhaustive and time consuming. Therefore, we present the fast and efficient two stages method that can efficiently track the many moving vehicles on the road. The first detects the vehicle plate regions and extracts the feature points of vehicle plates. The second associates the feature points between frames using dynamic programming.

A Study on Utilizing Smartphone for CMT Object Tracking Method Adapting Face Detection (얼굴 탐지를 적용한 CMT 객체 추적 기법의 스마트폰 활용 연구)

  • Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.588-594
    • /
    • 2021
  • Due to the recent proliferation of video contents, previous contents expressed as the character or the picture are being replaced to video and growth of video contents is being boosted because of emerging new platforms. As this accelerated growth has a great impact on the process of universalization of technology for ordinary people, video production and editing technologies that were classified as expert's areas can be easily accessed and used from ordinary people. Due to the development of these technologies, tasks like that recording and adjusting that depends on human's manual involvement could be automated through object tracking technology. Also, the process for situating the object in the center of the screen after finding the object to record could have been automated. Because the task of setting the object to be tracked is still remaining as human's responsibility, the delay or mistake can be made in the process of setting the object which has to be tracked through a human. Therefore, we propose a novel object tracking technique of CMT combining the face detection technique utilizing Haar cascade classifier. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the smartphone in real time.

Detecting Greenhouses from the Planetscope Satellite Imagery Using the YOLO Algorithm (YOLO 알고리즘을 활용한 Planetscope 위성영상 기반 비닐하우스 탐지)

  • Seongsu KIM;Youn-In CHUNG;Yun-Jae CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • Detecting greenhouses from the remote sensing datasets is useful in identifying the illegal agricultural facilities and predicting the agricultural output of the greenhouses. This research proposed a methodology for automatically detecting greenhouses from a given Planetscope satellite imagery acquired in the areas of Gimje City using the deep learning technique through a series of steps. First, multiple training images with a fixed size that contain the greenhouse features were generated from the five training Planetscope satellite imagery. Next, the YOLO(You Only Look Once) model was trained using the generated training images. Finally, the greenhouse features were detected from the input Planetscope satellite image. Statistical results showed that the 76.4% of the greenhouse features were detected from the input Planetscope satellite imagery by using the trained YOLO model. In future research, the high-resolution satellite imagery with a spatial resolution less than 1m should be used to detect more greenhouse features.