객체기반 영상분류를 위한 영상분할에 있어서 중요한 요소로는 분할축척(Scale), 분광 정보(Color), 공간 정보(Shape) 등이 있으며 공간 정보에 해당하는 공간 변수는 평활도(Smoothness)와 조밀도(Compactness)가 있다. 이들 가중치의 선택이 최종적으로 객체기반 영상분류의 결과를 좌우하게 된다. 본 연구는 객체기반 영상분류의 준비 과정이라 할 수 있는 영상분할에 있어서 다양한 가중치를 적용을 통하여 영상을 분할하였다. 영상분할을 위해 적용한 가중치는 10, 20, 30의 분할축척(Scale)과 분광 정보(Color)와 공간 정보(Shape)간의 가중치 조합, 공간 변수인 평활도(Smoothness)와 조밀도(Compactness)간의 가중치 조합을 사용하였다. 각 가중치 조합을 통하여 분할된 영상의 분석은 Moran's I 와 객체 내부 분산(Intrasegment Variance)을 이용하여 분석하였다. 각 객체간의 상관관계 분석을 위하여 Moran's I를 계산하였으며 분류된 지역의 동질성을 분석하기 위하여 객체 면적을 고려한 객체 내부 분산(Intrasegment Variance)값을 계산하였다. Moran's I 가 낮은 값을 가질수록 객체 간의 공간상관관계가 낮아지므로 이웃 객체간의 이질성은 높아지며 객체 내부 분산(Intrasegment Variance)이 낮은 값을 가질수록 지역간의 동질성은 높아지게 된다. Moran's I 와 객체 내부 분산(Intrasegment Variance)의 조합을 통하여 객체기반 영상분류 시 가장 높은 분류 정확도가 예상되는 밴드별 영상분할 가중치를 얻을 수 있다.
다양한 지구관측위성으로부터 획득된 윈격탐사 자료들은 맴핑 환경모니터링, 재난 관리,도심 모니터링등과 같은 다양한 분야의 정보를 생성하고 분석하는데 많은 잠재력을 가지고 있다. 특별히 고해상도 위성영상의 경우 도심 지역의 다양한 정보를 손쉽게 파악이 가능하며, 이를 기반으로 효과적인 도심 관리 및 시설 투자가 이루어 질 수 있다 그러나 이러한 고해상도 위성영상의 경우 공간 해상력은 매우 좋으나분광해상력 측면에서는 많은 한계를 보이고 있는 단점을 가지고 있다 이를 보완하기 위한 방법으로 고해상도 흑백모드영상과 중${\cdot}$ 저해상도 다중분광영상 혹은 초분광영상간 영상 합성기법을 통해 분광 능력의 향상을 도모하는 기법들이 연구되어져 왔으며보다 최적의 결과를 위한 다양한 알고리즘들이 개발되어 왔다 본 연구에서는 이러한 영상융합결과의 향상을 위한 방법으로 객체기반 단위의 영상합성 방법을 제시하였으벽이 결과와 화소기반 영상융합 결과와의 비교${\cdot}$ 분석도 수행해 보았다. 이를 위해 Landsat-7 ETM+ 혹백영상과 Hyperion 초분광영상을 실험대상으로 선정하여 분석하였으벽 대표적인 영상융합방법인 PCA 융합기법을 활용하였다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.28
no.6
/
pp.627-636
/
2010
Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation to consider spectral and spatial information of high resolution satellite image. Firstly, the initial seeds were automatically selected using local variation of multi-spectral edge information. After automatic selection of significant seeds, a segmentation was achieved by applying MSRG which determines the priority of region growing using information drawn from similarity between the extracted each seed and its neighboring points. In order to evaluate the performance of the proposed method, the results obtained using the proposed method were compared with the results obtained using conventional region growing and watershed method. The quantitative comparison was done using the unsupervised objective evaluation method and the object-based classification result. Experimental results demonstrated that the proposed method has good potential for application in the object-based analysis of high resolution satellite images.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.131-133
/
2016
본 논문은 연속적인 비디오 시퀀스에서 움직이는 객체의 영역을 효율적으로 분할하기 위하여 커널 기반 객체 추적과 Grab-Cut 알고리즘을 결합한 비디오 영역 분할 방법을 제안한다. 제안 방법에서는 추적 목표 객체의 초기 위치를 사각영역으로 선택하면, 사각의 외부 영역을 배경색상으로 인지하고, 배경 색상을 고려한 목표 객체의 주요 색상을 분석한다. 이를 기반으로 커널기반 객체 추적 기법을 적용하여 빠르게 객체의 영역을 추출한다. 추적한 각 객체의 영역에서 중앙 객체 영역과 배경 영역의 색 정보를 초기값으로 하여 Grab-Cut 알고리즘을 수행하고 사각형 형태가 아닌 객체의 실루엣 최적화된 영역으로 분할한다. 제안 방법을 스포츠 방송, 광고, 영화 등의 특수 효과로 활용되고 있는 stromotion 영상 생성에 적용하기 위하여 프레임별 추출된 객체의 영상을 새로운 프레임 영상에 합성하는 작업을 수행하여, 초당 10 프레임의 처리 속도에서 원하는 스트로모션 효과 영상을 생성하였다.
Journal of the Korean Association of Geographic Information Studies
/
v.15
no.4
/
pp.26-41
/
2012
It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.
The overall objective of this research was to investigate various combination of segmentation parameters and to improve classification accuracy of object-oriented classification. This research presents a method for evaluation of segmentation parameters by calculating Moran's I and Intrasegment Variance. This research used Landsat-7/ETM image of $11{\times}14$ Km developed area in Ansung, Korea. Segmented images are generated by 75 combinations of parameter. Selecting 7 combinations of high, middle and low grade expected classification accuracy was based on calculated Moran's I and Intrasegment Variance. Selected segmentation images are classified 4 classes and analyzed classification accuracy according to method of objected-oriented classification. The research result proved that classification accuracy is related to segmentation parameters. The case of high grade of expected classification accuracy showed more than 85% overall accuracy. On the other hand, low ado showed around 50% overall accuracy.
최근 스마트폰 기반의 AR(Augmented Reality) 기술이 이슈화됨에 따라 센서 기반의 AR 콘텐츠들이 빠르게 등장하고 있다. 그러나 센서 기반의 AR 기술인 P-AR(Pseudo AR)은 본질적인 AR이 구현되지 못하는 현실의 대안으로 사용되고 있으며, 실제 영상제어를 통한 AR 기술인 V-AR(Vision AR)은 기술개발이 진행 중에 있다. 이러한 예로 ARToolkit 등 AR을 제어할 수 있는 툴들이 개발 진행 중인데, 센서를 통해 이벤트를 발생시킬 수 있는 P-AR 기술에 반해 V-AR은 영상 자체에서 이벤트를 제어해야 하므로 상대적으로 구현이 어렵기 때문이다. V-AR에서 영상을 제어하기 위해서는 기본적으로 영상에서 잡음 제거, 특정객체 인식, 객체 분석 등이 요구된다. 따라서 본 논문에서는 향후 다가올 V-AR 기술에 대비하여 영상에서 배경 제거, 특정객체 인식, 객체 분석 등 효율적인 AR 영상제어를 할 수 있는 CV 기반 실시간 영상 분석 시스템의 프로토타입을 개발하였다.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.727-730
/
2004
영상은 복잡한 객체들의 집합으로 이루어져 있기 때문에 영상에 포함된 객체를 분리하는 일은 컴퓨터 비전이나 인식 등 많은 분야에서 중요시 된다. 영상 처리 측면에서 객체를 분할하기 위해서 색상, 모양, 질감, 움직임 등 다양한 기법들이 이용되고 있다. 본 논문에서는 정확한 색상의 비교를 위해서 CIE 색상 모델을 이용하고 있으며 이것을 기반으로 객체를 추출하고 있다. 그리고 추출된 객체의 해석과 검증을 위해서 모양 기반의 분석법을 이용하고 있다. 본 논문에서는 Pan/Tilt 카메라의 타겟팅(Targeting)과 포커싱(Focusing)을 위해 영상 내에 포함되어진 객체를 검출하기 위한 방법론을 제안하고자 한다. 객체를 인식하기 위해 CIE 색상 모델을 이용한 색상 매칭 기법을 제안하고 있다. 색상의 분포를 파악하기 위해서 CIE 모델이 생성해내는 Lab 블록을 통계적인 방법으로 분석한다. 그리고 분석된 결과는 CIE 블록 매칭(Bock Matching) 기법의 기준이 되며 이것을 이용해서 후보 객체 영역(Candidate Object Area)을 추출하게 된다. 추출된 후보 객체 영역을 검증하기 위해서 모멘트를 이용한 모양 기반의 분석을 활용하고 있다.
This paper showed how to analysis the object-based classification for wildfire fuel type map using Hyperion hyperspectral remote sensing data acquired in April, 2002 and compared the results of the object-based classification with the results of the pixel-based classification. Our methodological approach for wildfire fuel type map firstly processed correcting abnormal pixels and atypical bands and also calibrating atmospheric noise for enhanced image quality. Fuel type map is characterized by the results of the spectral mixture analysis(SMA). Object-based approach was based on segment-based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.155-158
/
2019
최근 지능형 CCTV 관제 시스템에 대한 수요가 증가하고 있다. CCTV 영상 데이터의 양이 폭발적으로 증가하고 있어 이를 분석하기 위한 기술의 발전이 필요한 실정이다. 대부분의 지능형 CCTV 관제 시스템은 영상 속 객체를 찾고 이 객체의 메타데이터를 통해 지능형 관제 시스템을 수행한다. 하지만 영상 속 객체의 로그가 항상 정확하지 않다. 현재의 객체 인식 기술로는 CCTV 영상의 밝기, 해상도 조건에 따라 성능의 차이가 심하고, 영상의 프레임 대비 빠르게 움직인 CCTV 영상 속 모든 객체를 사람이 인식하는 정도로 인식하기 어렵다. 이러한 이동 객체의 크기, 위치를 분석한 메타데이터에는 에러가 포함되기 쉽다. 본 논문에서는 지능형 CCTV 관제 시스템에서 분석한 영상 속 객체의 프레임 메타데이터 에러를 학습기반 실시간 에러 필터링 알고리즘을 통해 개선하여 에러가 필터링된 데이터를 사용하는 지능형 관제 시스템의 정확도 향상에 기여 할 것을 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.