• Title/Summary/Keyword: 개선된 1차 신뢰성 해석기법

Search Result 6, Processing Time 0.027 seconds

An Efficient Approach on Reliability Analysis under Multidisciplinary Analysis Systems (다분야 통합해석 시스템의 효율적인 신뢰성 해석기법 연구)

  • Ahn, Joong-Ki;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.18-25
    • /
    • 2005
  • Existing methods have performed the reliability analysis using nonlinear optimization techniques. This is mainly due to the fact that they directly apply Multidisciplinary Design Optimization(MDO) frameworks to the reliability analysis formulation. Accordingly, the reliability analysis and the Multidisciplinary Analysis(MDA) are tightly coupled in a single optimizer, which hampers utilizing the recursive and function-approximation based reliability analysis methods such as the Advanced First Order Reliability Method(AFORM). In order to utilize the efficient reliability analysis method under multidisciplinary analysis systems, we propose a new strategy named Sequential Approach on Reliability Analysis under Multidisciplinary analysis systems(SARAM). In this approach, the reliability analysis and the MDA are decomposed and arranged in a sequential manner, making a recursive loop. The efficiency of the SARAM method was verified using three illustrative examples taken from the literatures. Compared with existing methods, it showed the least number of subsystem analyses over other methods while maintaining accuracy.

Reliability Based Design Optimization for the Pressure Recovery of Supersonic Double-Wedge Inlet (이중 쐐기형 초음속 흡입구의 압력회복률에 대한 신뢰성 기반 최적설계)

  • Lee, Chang-Hyuck;Ahn, Joong-Ki;Bae, Hyo-Gil;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1067-1074
    • /
    • 2010
  • In this study, RBDO(Reliability Based Design Optimization) was performed for a supersonic double-wedge inlet. By considering uncertainty of design with given design space, the pressure recovery was transformed into the probabilistic constraint while the inlet drag was considered as a deterministic objective function. To save computational analysis cost and to search good design space, Latin-Hypercube design of experiment and the Kriging model were incorporated and then RBDO was performed. Monte-Carlo simulation was performed to verify the accuracy of AFORM(Advanced First Order Reliability Method). It was found that AFORM result agreed very well with the Monte-Carlo simulation result. The system reliability was guaranteed by considering uncertainty of the design variables. In case of considering diverse uncertainty of system design, RBDO was found to be useful.

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

Design Optimization of a Deep-sea Pressure Vessel by Reliability Analysis (신뢰성 해석을 이용한 심해용 내압용기의 설계 최적화)

  • JOUNG TAE-HWAN;NHO IN-SIK;LEE JAE-HWAN;HAN SEUNG-HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.40-46
    • /
    • 2005
  • In order to consider the statistical properties of probability variables which are used in structural analysis, the conventional approach of using safety factors based on past experience, are usually used to estimate the safety of a structure. The real structures could only be analyzed with the error in estimation of loads, materials and dimensional characteristics. Errors should be considered systematically in the structural analysis. In this paper, we estimated the probability of failure of two pressure vessels, simultaneously, using computational analysis. One pressure vessel, theoretically, had no stiffener whereas the other had. This paper also discusses sensitivity values of random variables in the rounded parts of the pressure vessel which had ring-style stiffener in the center of the external area which had ring-style stiffener. Finally, we show that the reliability index, and the probability of failure, can be calculated to particular tolerance limits.

Warpage analysis of a Door Carrier Plate in the injection molding Considering the characteristics of LFT (LFT소재 특성을 고려한 Door Carrier Plate 변형 해석)

  • You, Ho-Young;Park, Sihwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3625-3630
    • /
    • 2013
  • The modularization accomplished a big contribution in cost down and assembly-time shortening and the quality increase. But few improvements were made to this design largely due to the inflexibility of steel. In recent years, door modules made of PP-LFT material is manufactured using injection molding method. As a result, the plastic door modules allow more flexibility of door shape and become lighter. Warpage is generally large in the molded plastic door carrier plate due to the limitation of gate location and the fiber orientation. So after a few test injection the mold compensation processing for the improvement of an assembly characteristic. This research was performed to determine the factors that contribute to warpage for a injection-molded door carrier plate and presented differences in three mesh types of meshing method and its results. as a result we can improve process of tooling modification can reduce process of trial and error.

A Technique for Selecting Quadrature Points for Dimension Reduction Method to Improve Efficiency in Reliability-based Design Optimization (신뢰성 기반 최적설계의 효율성 향상을 위한 차원감소법의 적분직교점 선정 기법)

  • Ha-Yeong Kim;Hyunkyoo Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.217-224
    • /
    • 2024
  • This paper proposes an efficient dimension reduction method (DRM) that considers the nonlinearity of the performance functions in reliability-based design optimization (RBDO). The dimension reduction method evaluates the reliability more accurately than the first-order reliability method (FORM) using integration quadrature points and weights. However, its efficiency is hindered as the number of quadrature points increases owing to the need for an additional evaluation of the performance function. In this study, we assessed the nonlinearity of the performance function in RBDO and proposed criteria for determining the number of quadrature points based on the degree of nonlinearity. This approach suggests adjusting the number of quadrature points during each iteration of the RBDO process while maintaining the accuracy of theDRM while improving the computational efficiency. The nonlinearity of the performance function was evaluated using the angle between the vectors used in the maximum probable target point (MPTP) search. Numerical tests were conducted to determine the appropriate number of quadrature points according to the degree of nonlinearity. Through a 2D numerical example, it is confirmed that the proposed method improves the efficiency while maintaining the accuracy of the dimension reduction method or Monte Carlo Simulation (MCS).