DOI QR코드

DOI QR Code

A Technique for Selecting Quadrature Points for Dimension Reduction Method to Improve Efficiency in Reliability-based Design Optimization

신뢰성 기반 최적설계의 효율성 향상을 위한 차원감소법의 적분직교점 선정 기법

  • Ha-Yeong Kim (Department of Mechanical Engineering, Mokpo National University) ;
  • Hyunkyoo Cho (Department of Mechanical Engineering, Mokpo National University)
  • 김하영 (국립목포대학교 기계공학과 ) ;
  • 조현규 (국립목포대학교 기계공학과 )
  • Received : 2024.05.27
  • Accepted : 2024.06.10
  • Published : 2024.06.30

Abstract

This paper proposes an efficient dimension reduction method (DRM) that considers the nonlinearity of the performance functions in reliability-based design optimization (RBDO). The dimension reduction method evaluates the reliability more accurately than the first-order reliability method (FORM) using integration quadrature points and weights. However, its efficiency is hindered as the number of quadrature points increases owing to the need for an additional evaluation of the performance function. In this study, we assessed the nonlinearity of the performance function in RBDO and proposed criteria for determining the number of quadrature points based on the degree of nonlinearity. This approach suggests adjusting the number of quadrature points during each iteration of the RBDO process while maintaining the accuracy of theDRM while improving the computational efficiency. The nonlinearity of the performance function was evaluated using the angle between the vectors used in the maximum probable target point (MPTP) search. Numerical tests were conducted to determine the appropriate number of quadrature points according to the degree of nonlinearity. Through a 2D numerical example, it is confirmed that the proposed method improves the efficiency while maintaining the accuracy of the dimension reduction method or Monte Carlo Simulation (MCS).

본 논문에서는 신뢰성 기반 최적설계(RBDO)에서 성능함수의 비선형성을 고려한 효율적인 차원감소법(DRM)을 제안한다. 차원감소법은 적분직교점과 가중치를 사용하여 1차 신뢰도법(FORM) 보다 더 정확하게 신뢰도를 평가하는 반면 성능함수를 추가로 해석해야하기 때문에 적분직교점의 개수가 증가하면 효율성이 저해된다. 본 논문에서는 신뢰성 기반 최적설계에서 성능함수의 비선형도를 평가하고, 비선형도에 따라 적분직교점의 수를 결정하는 기준을 제안한다. 이를 통해 신뢰성 기반 최적설계가 진행될 때 반복마다 적분직교점의 수를 조절하여 차원감소법의 정확도는 유지하면서 계산의 효율성은 개선하는 방안을 제안한다. 성능함수의 비선형도 평가는 최대가능목표점(MPTP) 탐색에 사용한 벡터 사이의 각도를 통해 이루어지며, 수치 테스트를 통해 비선형도에 따른 적절한 적분직교점의 수를 도출하였다. 2차원 수치예제를 통해 개발된 방법이 차원감소법이나 몬테카를로 시뮬레이션(MCS)의 정확도는 유지하면서 효율성이 향상된다는 것을 확인하였다.

Keywords

References

  1. Armen, D.K., Lin, H.Z., Hwang, S.J. (1987) Second-Order Reliability Approximations, J. Eng. Mech., 113, pp.1208~1225.
  2. Lee, I.J., Choi, K.K., Du, L., Gorsich, D. (2008) Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems, Comput. Methods Appl. Mech. & Eng., 198, pp.14~27. https://doi.org/10.1016/j.cma.2008.03.004
  3. Rahman, S., Xu, H. (2004) A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics, Probab. Eng. Mech., 19, pp.393~408. https://doi.org/10.1016/j.probengmech.2004.04.003
  4. Tu, J., Choi, K.K., Park, Y.H. (1999) A New Study on Reliability-Based Design Optimization, J. Mech. Des., 121, pp.557~564. https://doi.org/10.1115/1.2829499
  5. Youn, B.D., Choi, K.K., Du, L. (2005) Adaptive Probability Analysis Using an Enhanced Hybrid Mean Value Method, Struct. & Multidiscip. Optim., 29 pp.134~148. https://doi.org/10.1007/s00158-004-0452-6
  6. Youn, B.D., Choi, K.K., Park, Y.H. (2003) Hybrid Analysis Method for Reliability-Based Design Optimization, J. Mech. Des., 125, pp.221~232. https://doi.org/10.1115/1.1561042
  7. Zhou, J., Mourelatos, Z.P. (2008) A Sequential Algorithm for Possibility-Based Design Optimization, J. Mech. Des., 130, p.011001