• Title/Summary/Keyword: 개별 유전자 분석

Search Result 50, Processing Time 0.032 seconds

A Eukaryotic Gene Structure Prediction Program Using Duration HMM (Duration HMM을 이용한 진핵생물 유전자 예측 프로그램 개발)

  • Tae, Hong-Seok;Park, Gi-Jeong
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.207-215
    • /
    • 2003
  • Gene structure prediction, which is to predict protein coding regions in a given nucleotide sequence, is the most important process in annotating genes and greatly affects gene analysis and genome annotation. As eukaryotic genes have more complicated stuructures in DNA sequences than those of prokaryotic genes, analysis programs for eukaryotic gene structure prediction have more diverse and more complicated computational models. We have developed EGSP, a eukaryotic gene structure program, using duration hidden markov model. The program consists of two major processes, one of which is a training process to produce parameter values from training data sets and the other of which is to predict protein coding regions based on the parameter values. The program predicts multiple genes rather than a single gene from a DNA sequence. A few computational models were implemented to detect signal pattern and their scanning efficiency was tested. Prediction performance was calculated and was compared with those of a few commonly used programs, GenScan, GeneID and Morgan based on a few criteria. The results show that the program can be practically used as a stand-alone program and a module in a system. For gene prediction of eukaryotic microbial genomes, training and prediction analysis was done with Saccharomyces chromosomes and the result shows the program is currently practically applicable to real eukaryotic microbial genomes.

IDE Design for Microarray Analysis Based on Accumulative Knowledge (지식축적기반 마이크로어레이 분석 통합개발환경 프로그램 설계)

  • Seok, Min-Seok;Choi, Ji-Hye;Oh, Se-Jong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1201-1204
    • /
    • 2010
  • 최근, 마이크로어레이 실험 데이터의 품질과 재 생산성에 대한 신뢰도가 증가했기 때문에 마이크로어레이 데이터의 공유 및 활용에 대한 요구가 꾸준히 증가하고 있다. 하지만, 개별적으로 진행되는 이 실험에서, 연구자는 각각의 실험계획에 따른 실험을 위해 별도로 실험계획을 하고, 그에 따른 단편적인 결과를 얻을 뿐, 이를 다시 재활용 하는 방안에는 microarray databases를 이용하는 것만이 전부였다. 하지만, 이 방법은 일반 생물학자들이, 다시 데이터베이스를 이용해서 분석하는데 많은 어려움을 가져왔고, 또한 각각의 실험 과정을 이용하는 과정에서도, 통합개발환경을 구축하지 못 한 것에 대해 시간적 손해를 많이 입고 있다. 이에 본 논문에서는 실험계획부터 자료의 표준화 및 시각화, 유의한 유전자 탐색, 군집분석, 분류분석을 할 수 있는 통합개발환경 프로그램에 대해 제시하고, 결론적으로 이 데이터를 효과적으로 재활용 할 수 있는 방안에 대해서 제시하였다. 결론적으로, 이 프로그램은 개별적인 통계 프로그램으로 분석을 할 때에 비해, 편의성이 향상하며, 시간적인 소모를 줄임으로써, 상당히 많은 이득을 얻을 수 있으며, 한번 분석한 데이터를 효율적으로 저장해 놓음으로써, 추후에 제 2,3의 데이터 가공을 통해, 더 많은 정보를 얻어 낼 수 있다.

  • PDF

The Application of Genetic Algorithm for the Identification of Discontinuity Sets (불연속면 군 분류를 위한 유전자알고리즘의 응용)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.47-54
    • /
    • 2005
  • One of the standard procedures of discontinuity survey is the joint set identification from the population of field orientation data. Discontinuity set identification is fundamental to rock engineering tasks such as rock mass classification, discrete element analysis, key block analysis. and discrete fracture network modeling. Conventionally, manual method using contour plot had been widely used for this task, but this method has some short-comings such as yielding subjective identification results, manual operations, and so on. In this study, the method of discontinuity set identification using genetic algorithm was introduced, but slightly modified to handle the orientation data. Finally, based on the genetic algorithm, we developed a FORTRAN program, Genetic Algorithm based Clustering(GAC) and applied it to two different discontinuity data sets. Genetic Algorithm based Clustering(GAC) was proved to be a fast and efficient method for the discontinuity set identification task. In addition, fitness function based on variance showed more efficient performance in finding the optimal number of clusters when compared with Davis - Bouldin index.

Genetically Optimized Design of Fuzzy Neural Networks for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위한 퍼지뉴럴네트워크의 유전자적 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1891-1892
    • /
    • 2008
  • 본 논문에서는 부분방전 패턴인식을 위한 퍼지뉴럴네크워크(Fuzzy-Nueral Network를 설계한다. 퍼지뉴럴네트워크의 구조에서 규칙의 전반부는 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 유전자 알고리즘을 이용하여 각 입력에 대한 전반부 멤버쉽함수의 정점과 학습률 및 모멤텀 계수를 최적으로 동조한다. 제안된 네트워크는 부분방전 패턴인식을 위해 다중 출력을 가지며, 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 256개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류하며, 패턴인식률로서 결과를 분석한다.

  • PDF

Impact of Various Feedstock Attributes on the Social Acceptance on Bioethanol Promotion in South Korea (바이오에탄올 보급에 대한 사회적 수용성 분석: 바이오에탄올 원료 속성을 중심으로)

  • Li, Dmitriy D.;Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.30 no.1
    • /
    • pp.49-77
    • /
    • 2021
  • This study uses a choice experiment approach to examine whether different types of feedstocks as well as other attributes such as the cost of bioethanol, bioethanol blending ratio, and government support policies affect consumers' biofuel preferences. We apply a standard conditional logit model, a mixed logit model (MLM), and individual coefficient estimation model (ICM) to estimate the parameters of the investigated attributes. The results show that people prefer domestic and non-food feedstock, along with tax exemption as a support policy. All the attributes show unobservable preference heterogeneity in the MLM and ICM. In particular, willingness to pay for attributes are higher in the genetically modified (GM) feedstock-unknown group than in the known one. We show the importance of using domestic and non-food feedstocks and managing GM feedstocks carefully to avoid consumer resistance when producing bioethanol in South Korea.

A Transit Assignment Model using Genetic Algorithm (유전자 알고리즘을 이용한 대중교통 통행배정모형 개발)

  • 이신해;최인준;이승재;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.65-75
    • /
    • 2003
  • In these days, public transportation has become important because of serious traffic congestion. But. there are few researches in public transportation compared with researches in auto. Accordingly, the purpose of paper is development of transit assignment model, which considers features of public transportation, time table, transfer capacity of vehicle, common line, etc. The transit assignment model developed in this paper is composed of two parts. One part is search for optimum path, the other part is network loading. A Genetic algorithm has been developed in order to search for alternative shortest path set. After the shortest paths have been obtained in the genetic algorithm, Logit-base stochastic loading model has been used to obtain the assigned volumes.

Investigation of Conserved Regions in Lipase Genes (Lipase 유전자의 보존적 영역 탐색)

  • 이동근;김철민;김상진;이상현;이재화
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.723-731
    • /
    • 2003
  • For the investigation of conserved regions in lipase genes, 132 and 24 sequences were obtained from LED (Lipase Engineering Database) and COG (Clusters of Orthologous Groups of proteins), respectively. There was high diversity in lipase genes and peculiar amino acid sequences were conserved for each homologous family of LED. Similar conserved amino acid sequences were detected from COG0657 and Moraxella lipase 1 homologous group of LED. Although many studies have attempted to detect new lipase genes in procaryotes, they have been limited culturable bacteria. The importance of metagenome, including DNA from non-culturable bacteria, is known. Due to the high diversity, we assumed it might be possible to detect new lipase gene from metagenome. Due to the high diversity of nucleotide sequences in lipase genes, 10 primer sets were designed. Designed primer sets were inspected in BLAST of NCBI and they could amplify a part of the lipase gene from 222 to 713 bp. They can amplify 16.7%∼60.0% of each lipase homologous group which was 3.6 fold higher than each sets. They might offer a high probability of detecting new lipase genes, owing to high efficiency and the diversity of lipase genes.

Hypernetwork Classifiers for Microarray-Based miRNA Module Analysis (마이크로어레이 기반 miRNA 모듈 분석을 위한 하이퍼망 분류 기법)

  • Kim, Sun;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.347-356
    • /
    • 2008
  • High-throughput microarray is one of the most popular tools in molecular biology, and various computational methods have been developed for the microarray data analysis. While the computational methods easily extract significant features, it suffers from inferring modules of multiple co-regulated genes. Hypernetworhs are motivated by biological networks, which handle all elements based on their combinatorial processes. Hence, the hypernetworks can naturally analyze the biological effects of gene combinations. In this paper, we introduce a hypernetwork classifier for microRNA (miRNA) profile analysis based on microarray data. The hypernetwork classifier uses miRNA pairs as elements, and an evolutionary learning is performed to model the microarray profiles. miTNA modules are easily extracted from the hypernetworks, and users can directly evaluate if the miRNA modules are significant. For experimental results, the hypernetwork classifier showed 91.46% accuracy for miRNA expression profiles on multiple human canters, which outperformed other machine learning methods. The hypernetwork-based analysis showed that our approach could find biologically significant miRNA modules.

Quantitative Trait Loci for Stem Length in Soybean Using a Microsatellite Markers (콩에서 Microsatellite 마커를 이용한 양적형질 유전자의 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg;Kong, Hyeun-Jong;Park, In-Soo
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.339-344
    • /
    • 2004
  • Identification of individual quantitative trait loci (QTL) is a prerequisite to application of marker-assisted selection for stern length. Two simple sequence repeat (SSR)-based linkage maps were constructed from recombination inbred line populations between cross of Keunolkong and Shinpaldalkong. Two parents used differed greatly in stem length, which were 30.57 cm and 49.75 cm in Keunolkong and Shinpaldalkong, respectively. Using the constructed maps, regression analysis and interval mapping were performed to identify QTLs conferring stem length. Four QTLs for stem length on linkage groups (LG) F, J, N and O were identified in the Keunolkong ${\times}$ Shinpaldalkong population and they totally explained 37.83% of variation for stem length. In the population, two major QTLs on LG J and O conditioning 14.25% and 10.68% of the phenotypic variation in stem length were determined and two QTLs with minor effect were detected on LG F and N. Identification of QTLs for stem length and mapping individual locus should facilitate to describe genetic mechanisms for stem length in different population. SSR markers tightly linked to QTLs for stem length allow to accelerate the elimination of deleterious genes and selection for desirable recombinants at early stage in crop breeding programs.

A Transit Assignment Model and Transit Passenger OD Estimation from Passenger Counts (대중교통 통행배정모형 개발 및 통행량 기반 대중교통 기종점 통행량 추정)

  • 이신해
    • Proceedings of the KOR-KST Conference
    • /
    • 2002.02a
    • /
    • pp.45-77
    • /
    • 2002
  • 교통혼잡 문제가 점점 심각해짐에 따라 대중교통의 중요성은 날로 부각되며, 대중교통을 지원하기 위한 정책들이 속속 입안되고 있어 대중교통을 심도 있게 분석할 수 있는 틀의 개발은 필연적이라 할 수 있다. 이에 본 연구는 대중교통 통행배정모형 개발과 대중교통 기종점통행량(OD) 추정을 목적으로 수행되었다. 대중교통 통행배정모형의 개발부분에서는 기존의 대중교통 통행배정모형이 개별차량과 다른 대중교통의 특성을 정확히 반영하고 있지 못하다는 한계를 극복하고자, 최적경로 탐색에는 유전자 알고리즘(Genetic Algorithm)을 통행량 배정에는 로짓모형을 기반으로 한 확률적 통행량 배정모형(Stochastic Network Loading Model)을 이용하여 TATSN 모형을 개발하였다. 그리고, 대중교통 기종점통행량의 추정은 전통적인 기종점통행량 추정 방법인 기종점조사 방법이 시간과 비용이 과대하게 소요된다는 단점을 인식하여 관측통행량을 이용하여 추정하는 방법을 제안하였다.

  • PDF