DOI QR코드

DOI QR Code

Impact of Various Feedstock Attributes on the Social Acceptance on Bioethanol Promotion in South Korea

바이오에탄올 보급에 대한 사회적 수용성 분석: 바이오에탄올 원료 속성을 중심으로

  • Received : 2021.03.04
  • Accepted : 2021.03.13
  • Published : 2021.03.31

Abstract

This study uses a choice experiment approach to examine whether different types of feedstocks as well as other attributes such as the cost of bioethanol, bioethanol blending ratio, and government support policies affect consumers' biofuel preferences. We apply a standard conditional logit model, a mixed logit model (MLM), and individual coefficient estimation model (ICM) to estimate the parameters of the investigated attributes. The results show that people prefer domestic and non-food feedstock, along with tax exemption as a support policy. All the attributes show unobservable preference heterogeneity in the MLM and ICM. In particular, willingness to pay for attributes are higher in the genetically modified (GM) feedstock-unknown group than in the known one. We show the importance of using domestic and non-food feedstocks and managing GM feedstocks carefully to avoid consumer resistance when producing bioethanol in South Korea.

본 연구는 선택실험법을 이용하여 바이오에탄올 원료유형, 바이오에탄올 혼합율, 바이오에탄올 비용, 정부지원 정책과 같은 속성들이 바이오에탄올 보급정책에 대한 사회적 수용성에 영향을 미치는지를 분석하였다. 바이오에탄올 속성 계수를 추정하기 위해 조건부로짓모형, 혼합로짓모형, 개별계수추정모형을 적용하였다. 추정 결과에 따르면, 소비자들은 국산원료와 비식량원료를 사용한 바이오에탄올을 선호하고 지원정책 가운데는 면세정책을 선호하는 것으로 나타났다. 혼합로짓모형과 개별계수추정모형에 의하면 모든 속성들이 관찰불가능한 이질성을 갖고 있는 것으로 나타났다. 또한 속성별 지불용의액을 추정한 결과, 유전자조작기반 바이오에탄올임을 사전에 인지한 응답자일수록 그렇지 못한 응답자보다 바이오에탄올에 대한 지불용의액이 더 낮게 나타났다. 추정결과를 종합하면, 우리나라에서 바이오에탄올을 보급하기 위해서는 국산원료 및 비식량원료에 기반한 바이오에탄올을 중점적으로 보급해야 하고, 특히 유전자 조작 기반 바이오에탄올에 대한 수용성이 낮게 나타나므로 보급시 이를 충분히 고려해야 할 것이다.

Keywords

References

  1. Bae, J. H., "Supply Portfolio of Bioethanol in the Republic of South Korea," The South Korean Economic Review, Vol. 30, No. 1, 2014, pp. 133-161.
  2. Bae, J. H., and M. Rishi, "Increasing consumer participation rates for green pricing programs: A choice experiment for South South Korea," Energy Economics, Vol. 74, 2018, pp. 490-502. https://doi.org/10.1016/j.eneco.2018.06.027
  3. Bujosa, A., A. Riera, and R. L. Hicks, "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental and Resource Economics, Vol. 47, No. 4, 2010, pp. 477-493. https://doi.org/10.1007/s10640-010-9389-y
  4. Fimereli, E., and S. Mourato, Consumer preferences for bioethanol blends, 2009 EAERE Summer School, 5th-11th July 2009, Venice, pp. 1-17, 2009.
  5. Hensher, D. A., J. M. Rose, and W. H. Green, Applied Choice Analysis. Second ed, Cambridge University Press, Cambridge, pp. 1-1698, 2015.
  6. Hole, A. R., "Fitting mixed logit models by using maximum simulated likelihood," Stata J, Vol. 7, 2007, pp. 388-401. https://doi.org/10.1177/1536867x0700700306
  7. International Service for the Acquisition of Agri-biotech Applications(ISAAA), "Global status of commercialized biotech/GM Crops:2017," ISAAA Briefs, Vol. 53, 2017, pp. 1-100.
  8. Jensen, K. L., C. D. Clark, B. C. English, R. J. Menard, D. K. Skahan, and A. C. Marra, "Willingness to pay for E85 from corn, switchgrass, and wood residues," Energy Economics, Vol. 32, No. 6, 2010, pp. 1253-1262. https://doi.org/10.1016/j.eneco.2010.06.002
  9. Lanzini, P., F. Testa, and F. Iraldo, "Factors affecting drivers' willingness to pay for biofuels: the case of Italy," Journal of Cleaner Production, Vol. 112, 2016, pp. 2684-2692. https://doi.org/10.1016/j.jclepro.2015.10.080
  10. Li, T., and J. J. Mccluskey, "Consumer preferences for second-generation bioethanol," Energy Economics, Vol. 61, 2017, pp. 1-7. https://doi.org/10.1016/j.eneco.2016.10.023
  11. Lim, S. Y., H. J. Kim, and S. H. Yoo, "Public's willingness to pay a premium for bioethanol in South Korea: A contingent valuation study," Energy Policy, Vol. 101, 2017, pp. 20-27. https://doi.org/10.1016/j.enpol.2016.11.010
  12. Loureiro, M. L., X. Labandeira, and M. Hanemann, "Transport and low-carbon fuel: A study of public preferences in Spain," Energy Economics, Vol. 40, 2013, pp. 1-26. https://doi.org/10.1016/j.eneco.2013.06.005
  13. Mamadzhanov, A., J. J. McCluskeym, and T. Li, "Willingness to pay for a second- generation bioethanol: A case study of South Korea," Energy Policy, Vol. 127, 2019, pp. 464-474. https://doi.org/10.1016/j.enpol.2018.12.001
  14. McFadden, D., Conditional logit analysis of qualitative choice behavior, Berkeley: CA. University of California, pp. 1-38, 1973.
  15. Ministry of Trade, Industry and Energy, Implementation Plan for Renewable Energy 3020 Agenda, 2017.
  16. Miren, I. S., S. Javier, and W. Carmina, "Consumer reaction to information on the labels of genetically modified food," Rev Saude Publica 2014, Vol. 48, No. 1, 2014, pp. 154-169.
  17. Mueller, S., J. Lie, B. Keesom, and S. Unnasch, The impact of higher ethanol blend levels on vehicle emissions in 5 global cities, Workshop at the University of Illinois at Chicago, pp. 1-104, 2018.
  18. Petrolia, D. R., S. Bhattacharjee, D. Hudson, and C. W. Herndon, "Do Americans want ethanol? A comparative contingent-valuation study of willingness to pay for E-10 and E-85," Energy Economics, Vol. 32, No. 1, 2010, pp. 121-128. https://doi.org/10.1016/j.eneco.2009.08.004
  19. Revelt, D., and K. Train, Customer-specific Taste Parameters and Mixed Logit: Households' Choice of Electricity Supplier, Econometrics 0012001, University Library of Munich, Germany, 2001.
  20. Shin, J., and W. -S. Hwang, "Consumer preference and willingness to pay for a renewable fuel standard (RFS) policy: Focusing on ex-ante market analysis and segmentation," Energy Policy, Vol. 106, 2017, pp. 32-40. https://doi.org/10.1016/j.enpol.2017.03.042
  21. Solomon, B. D., and N. H. Johnson, "Valuing climate protection through willingness to pay for biomass ethanol," Ecological Economics, Vol. 68, No. 7, 2009, pp. 2137-2144. https://doi.org/10.1016/j.ecolecon.2009.02.010
  22. Stein, R. A., J. E. Anderson, and T. J. Wallington, "An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions," SAE International Journal of Engines, Vol. 6, No. 1, 2013, pp. 470-487. https://doi.org/10.4271/2013-01-1635
  23. Train, K. E., Discrete choice methods with simulation, Cambridge, Cambridge University Press, pp. 1-388. 2009.
  24. Wang, M., J. Han, J. Dunn, H. Cai, and A. Elgowainy, "Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Ethanol From Corn, Sugarcane, and Cellulosic Biomass for US Use," Environmental Research Letters, Vol. 7, No. 4, 2012, pp. 1-13.
  25. Yoo, J., and R. C. Ready, "Preference heterogeneity for renewable energy technology," Energy Economics, Vol. 42, 2014, pp. 101-114. https://doi.org/10.1016/j.eneco.2013.12.007