• Title/Summary/Keyword: 개방 전압

Search Result 280, Processing Time 0.028 seconds

Fabrication and Chracteristics of Cutting Cell with Various Laser Conditions (다양한 레이저 조건에 따른 컷팅셀 제작 및 특성 분석)

  • Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Jang, Jae Joon;Lim, Dong gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.9-17
    • /
    • 2019
  • Laser cutting cell of solar cells can achieve high voltage and efficiency through more array than conventional 6 inch cell compared to same area. In this study, we fabricated c-Si cutting cell with various lasers and laser conditions such as power, speed, and number of times. In the case of picosecond laser, excellent surface characteristics were obtained due to small surface defects and low thermal damage at the output of 20W and the speed of 100 mm/s. However, it is not possible to fabricate a cutting cell having good characteristics due to nonuniform cutting inside the wafer when the processing for forming a cutting cell is not sufficiently performed. For nanosecond lasers, the best wafer characteristics were obtained for fabrication of excellent cutting cells at a frequency of 500 kHz and a laser speed of 100 mm/s. However, the nanosecond laser has not been processed sufficiently in the condition of a number of times. As a result, it was confirmed that the wafer thickness was cut by $63{\mu}m$ of the cell thickness of $170{\mu}m$ in the condition of five times of laser process. It was found that more than 30% of the wafer thickness had to be processed to fabricate the cutting cell. After cutting the 6-inch cell having the voltage of 0.65 V, we obtained the voltage of about 0.63 V.

A Clock System including Low-power Burst Clock-data Recovery Circuit for Sensor Utility Network (Sensor Utility Network를 위한 저전력 Burst 클록-데이터 복원 회로를 포함한 클록 시스템)

  • Song, Changmin;Seo, Jae-Hoon;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.858-864
    • /
    • 2019
  • A clock system is proposed to eliminate data loss due to frequency difference between sensor nodes in a sensor utility network. The proposed clock system for each sensor node consists of a bust clock-data recovery (CDR) circuit, a digital phase-locked loop outputting a 32-phase clock, and a digital frequency synthesizer using a programmable open-loop fractional divider. A CMOS oscillator using an active inductor is used instead of a burst CDR circuit for the first sensor node. The proposed clock system is designed by using a 65 nm CMOS process with a 1.2 V supply voltage. When the frequency error between the sensor nodes is 1%, the proposed burst CDR has a time jitter of only 4.95 ns with a frequency multiplied by 64 for a data rate of 5 Mbps as the reference clock. Furthermore, the frequency change of the designed digital frequency synthesizer is performed within one period of the output clock in the frequency range of 100 kHz to 320 MHz.

A Study on the Characteristics of Dye-Sensitized Solar Cell Using Nb2O5 Semiconductor Oxides (Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성 연구)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.330-333
    • /
    • 2019
  • Various studies on dye-sensitized solar cells, which are cheaper to manufacture and have superior stability than silicon solar cells, are continuously conducted. In this study, the properties of dye-sensitized solar cells were studied using semiconductor oxides made by mixing $TiO_2$ and $Nb_2O_5$. By adding $Nb_2O_5$ in different proportions, the solar cell was made, and the surface area and electrical characteristics of this cell were measured. As $Nb_2O_5$ was added, the contact area of dye and electrolyte increased and the short-circuit current, open voltage, fill factor and conversion efficiency of dye-sensitized solar cells were confirmed to be improved.

Fabrication and Characterization of Triboelectric Nanogenerator based on Porous Animal-collagen (다공성 동물성-콜라겐을 이용한 마찰전기 나노발전기 제작 및 특성평가)

  • Shenawar Ali Khan;Sheik Abdur Rahman;Woo Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.179-187
    • /
    • 2023
  • Nanogenerators containing biomaterials are eco-friendly electronic devices in terms of being a non-polluting energy source and biodegradable electronic waste. In particular, the amount of waste will be also reduced if the biomaterial can be extracted from biowaste. In this study, a triboelectric nanogenerator was fabricated using animal collagen present in the skin of a mammal and its characteristion was proformed. The electro-anodic layer of the triboelectric nanogenerator was constructed by forming a collagen film using the spin coating method, and it was confirmed that the film was porous from scanning electron microscopy. The fabricated triboelectric nanogenerator exhibited an open-circuit voltage from 7 V at 3 Hz to 15 V at 5 Hz due to periodic mechanical movement, and a short-circuit current of 3.8 uA at 5 Hz. In conclusion, collagen-containing triboelectric nanogenerators can be power source for low-power operating devices such as sensors and are also expected to be useful for reducing electronic waste.

Design of Reconfigurable Dual Polarization Patch Array Antenna (재구성 이중편파 패치 배열 안테나 설계)

  • Won Jun Lee;Young Jik Cha
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.463-468
    • /
    • 2023
  • In this paper, we proposed reconfigurable dual polarization patch array antenna that can select two polarizations(Vertical, RHCP) using defected ground structure and Pin diode. The proposed antenna was designed arranging a circular polarization patch antenna implemented with a square microstrip patch and two slots 3x3 at 25.8mm placed, a half-wavelength of 5.8 GHz. Conect the pin diode and the capacitor to the slot diagonally placed on the ground of each antennas, and select polarization using the open/short operating according to the application of DC voltage to the pin diode. As a result of the design, the gain of the antenna is 11.7 dBi at vertical polarization and 11.6 dBic at RHCP. The axial ratio is 20.3 dB at 1.8 dB vertical polarization at RHCP. Mutual Coupling is Maximum to -20.8 dB for vertical polarization and Maximum to -30.1 dB for RHCP.

The Fabrication of $n^+-p^+$ InP Solar Cells by the Diffusion of Sulphur (S확산에 의한 $n^+-p^+$ InP 태양전지의 제작)

  • Jung, Ki-Ung;Kim, Seon-Tai;Moon, Dong-Chan
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.60-65
    • /
    • 1990
  • [ $n^+-p^+$ ] InP homojunction solar cells were fabricated by thermal diffusion of sulphur into a $p^+$-InP wafer($p=4{\times}10^{18}cm^{-3}$), and a SiO film($600{\AA}$ thick) was coated on the $n^+$ layer as an antireflection(AR) coating by an e-beam evaporator. The volume of the cells were $5{\times}5{\times}0.3mm^3$. The front contact grids of the cells with 16 finger pattern of which width and space were $20{\mu}m$ and $300{\mu}m$ respectively, were formed by photo-lithography technique. The junction depth of sulphur were as shallow as about 0.4r m We found out the fabricated solar cells that, with increasing the diffusion time, short circuit current densities($J_{sc}$), series resistances($R_s$) and energy conversion efficiencies(${\eta}$) were increased. The cells show good spectral responses in the region of $5,000-9,000{\AA}$. The short circuit current density, the open circuit voltage( $V_{oc}$), the fill factor(F.F) and the energy conversion efficiency of the cell were $13.16mA/cm^2$, 0.38V, 53.74% and 10.1% respectively.

  • PDF

Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films (메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지)

  • Lee, Hyo Joong
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This review article summarizes the recent progress of quantum dot (QD)-sensitized solar cells based on mesoporous $TiO_2$ thin films. From the intrinsic characteristics of nanoscale inorganic QDs with various compositions, it was possible to construct a variety of 3rd-generation thin film solar cells by solution process. Depending on preparation methods, colloidal QD sensitizers are pre-prepared for later deposition onto the surface of $TiO_2$ or in-situ deposition of QDs from chemical bath is done for direct growth of QD sensitizers over substrates. Recently, colloidal QD sensitizers have shown an overall power conversion efficiency of ~7% by a very precise control of composition while a representative CdS/CdSe from chemical bath deposition have done ~5% with polysulfide electrolytes. In the near future, it is necessary to carry out systematic investigations for developing new hole-conducting materials and controlling interfaces within the cell, thus leading to an enhancement of both open-circuit voltage and fill factor while keeping the current high value of photocurrents from QDs towards more efficient and stable QD-sensitized solar cells.

Electromagnetic Flapping Shutters for Phone Cameras (폰 카메라용 전자기력 Flapping 셔터)

  • Choi, Hyun-Young;Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1385-1391
    • /
    • 2010
  • In this study, we present small-size, low-power, and high-speed electromagnetic flapping shutters for phone cameras. These shutters are composed of trapezoidal twin blades suspended by H-type torsional springs. The existing electrostatic rolling and flapping shutters need high input voltage, while the existing electromagnetic rotating shutters are too big to be used for phone cameras. To achieve low-power and high-speed angle motion for small-size electromagnetic flapping shutters for camera phones, low-inertia trapezoidal twin blades, each suspended by the low-stiffness H-type torsional springs, are employed. The electromagnetic flapping shutters used in this experimental study have steady-state rotational angles of $48.8{\pm}1.4^{\circ}$ and $64.4{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively, for an input current of 60 mA; the maximum overshoot angles are $80.2{\pm}3.5^{\circ}$ and $90.0{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively. The rising/settling times of the shutter while opening are 1.0 ms/20.0 ms, while those while closing are 1.7 ms/10.3 ms. Thus, we experimentally demonstrated that the smallsize (${\sim}8{\times}8{\times}2\;mm^3$), low-power (${\leq}60\;mA$), and high-speed (~1/370 s) electromagnetic flapping shutters are suitable for phone cameras.

Development of Algorithm and Program for the Ground Fault Detection in Ungrounded Distribution Power System (비접지 배전계통 지락고장 검출 알고리즘 및 프로그램 개발)

  • Park, So-Young;Shin, Chang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2619-2627
    • /
    • 2009
  • The ground fault is occupying 70% among the total number of faults in ungrounded distribution power system. When the ground fault occurs in ungrounded system, the fault current is so small that it is hard to detect. But fault handling is very important because to continue power supply during fault conditions may cause the fault spreading and the distribution device in trouble. This paper presents the fault line detection method by using GPT signal detecting zero sequence voltage, and the fault section detection method by detecting whether GPT signal is disappeared or not during shifting normally open switch, which is connecting switch between distribution lines with open state in order to restore the outage area under emergency situation, and during isolating each section one by one which belongs to the fault line. This method is efficient because there is no whole power interruption during the fault section detection, and it is possible to perform both the fault section detection and the service restoration for the outage area at the same time, and it can apply to various distribution system configuration. Program for the fault restoration was developed applying proposed method, and it has been validated by applying to the pilot project of distribution automation system in Vietnam which has the ungrounded distribution system.

Degradation of a nano-thick Au/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells (염료감응태양전지의 Au/Pt 이중 촉매층의 전해질과의 반응에 따른 열화)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4013-4018
    • /
    • 2014
  • A 0.45 $cm^2$ DSSC device with a glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/50 nm-Pt/50 nm-Au/FTO/glass was prepared to examine the stability of the Au/Pt bilayered counter electrode (CE) with electrolyte and the energy conversion efficiency (ECE) of dye-sensitized solar cells (DSSCs). For comparison, a 100 nm-thick Pt only CE DSSC was also prepared using the same method. The photovoltaic properties, such as the short circuit current density ($J_{sc}$), open circuit voltage ($V_{oc}$), fill factor (FF), and ECE, were checked using a solar simulator and potentiostat with time after assembling the DSSC. The microstructure of the Au/Pt bilayer was examined by optical microscopy after 0~25 minutes. The ECE of the Pt only CE-employed DSSC was 4.60 %, which did not show time dependence. On the other hand, for the Au/Pt CE DSSC, the ECEs after 0, 5 and 15 minutes were 5.28 %, 3.64 % and 2.09 %, respectively. The corrosion areas of the Au/Pt CE determined by optical microscopy after 0, 5, and 25 minutes were 0, 21.92 and 34.06 %. These results confirmed that the ECE and catalytic activity of Au/Pt CE decreased drastically with time. Therefore, a Au/Pt CE-employed DSSC may be superior to the Pt only CE-employed one immediately after integration of the device, but it would degrade drastically with time.