• Title/Summary/Keyword: 강제 변위

Search Result 52, Processing Time 0.021 seconds

Estimation of Flutter Derivatives for a Plate Girder Bridge Using Forced and Free Oscillation Tests (자유진동 및 강제진동 기법을 이용한 플레이트 거더교의 플러터 계수 산정)

  • Kim, Jong-Dae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.332-335
    • /
    • 2011
  • 바람에 의해 발생하는 장대교량의 진동현상은 버펫팅과 와류진동 그리고 플러터 등으로 구분할 수 있으며, 특히 설계풍속에 해당하는 강풍에 안전한 교량을 설계하는 것이 주된 관심사항이다. 이러한 장대교량의 공기역학적인 안정성 검토에 사용되는 플러터 계수를 풍동실험을 통하여 산정하였다. 본 논문에서는 일반적인 플레이트 거더교의 강풍에 대한 안정성을 검토하기 위하여 풍동실험을 수행하였으며, 자유진동 기법과 강제진동 기법을 사용하여 추출한 플러터 계수를 비교하였다. 자유진동 기법은 교량단면에 초기변위를 주어 상하 및 회전 진동을 하는 교량단면의 변위를 측정한 후 system identification 기법으로 플러터 계수를 구하게 된다. 그리고 강제진동 기법은 상하방향의 강제진동과 회전방향의 강제진동 실험을 독립적으로 수행하여 교량단면에 작용하는 풍하중과 단면의 진동을 분석함으로써 플러터 계수를 추정하게 된다. 그리고 플러터 계수의 비교를 통하여 강제진동 기법과 자유진동 기법의 장단점을 분석하였다.

  • PDF

Response Characteristics of Forced Vibration Model with Sinusoidal Exciting Force (정현파로 가진한 강제진동 해석과 응답특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.131-137
    • /
    • 2020
  • The characteristics of forced vibration with excited sinusoidal force was introduced. Also, numerical analyses and FRF in frequency domain were performed in detail. In this regard, the responses of displacement, velocity and acceleration were investigated in a forced vibration model. The FRF characteristics in real and imaginary part around natural frequency are also discussed. This response approach of forced vibration in time domain is used for the identification and monitoring of sinusoidal forced vibration. For acquiring a displacement, velocity and acceleration, a numerical technique of Runge-Kutta-Gill method was performed. For the FRF(frequency response function), These responses are used. Also, the FRF can represent the intrinsic characteristics of the forced vibration. These performed results and analysis are successful in each damped condition for the forced vibration model. After numerical analysis of the different mass, damping and stiffness, the forced vibration response characteristics with sinusoidal force was discriminated considering its amplitude and frequency simultaneously.

Wave Analysis of Forced In-Plane Vibration of Plates (탄성파를 이용한 평판의 강제 내면전동 해석)

  • Kil Hyun-Gwon;Choi Jae-Sung;Hong Suk-Yoon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.297-302
    • /
    • 1999
  • 평판의 일반적인 형태의 진동을 해석하기 위해서는, 외면진동뿐만이 아니라 내면진동을 해석하여야 한다. 평판 내면진동의 경우 탄성파인 종파와 전단파의 전파에 의한 영향으로 발생하며, 진동 변위, 진동 에너지, 진동 인텐시티 등의 특성들을 이해하기 위해서는 각 파동의 영향을 분리하여 낼 필요가 있다. 내면진동을 해석하기 위하여 진동 모드법을 사용할 수 있으나, 각 파동에 의한 영향을 분리하여 낼 수가 없다. 본 논문에서는 진동장을 탄성파들에 의한 영향의 합으로 나타냄으로써, 각 파동에 의한 진동 변위, 진동 에너지, 진동 인텐시티 둥의 영향들을 분리할 수 있는 해석 방법을 제안하고자 한다. 이러한 해석 방법을 이용하여 점가진력에 의하여 강제 진동하는 평판의 내면 진동장에 대한 수치 계산을 수행하였다. 결과로써 진동 변위, 진동 에너지, 진동 인텐시티 등을 이루는 탄성파들의 기여도와 특성들을 분석함으로써 본 해석기법의 유용성을 보였다.

  • PDF

The Mechanical Behavior of Steel Circular Caisson by Horizontal Load (水平載荷에 따른 鋼製圓筒 케이슨의 力學的 擧動)

  • 장정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.141-150
    • /
    • 1998
  • Model tests were performed to examine the mechanical behavior of steel circular caisson by horizontal load. It was generally found that displacements and bottom pressure of the caisson model were increased rapidly at the local plastic load. The maximum displacement was measured at the loading point, whereas the less displacement was measured at the upper part of the caisson model. The bottom pressure was getting higher, as it was nearer the loading side. Furthermore, the increase ratio of the bottom pressure was higher as the load was increased.

  • PDF

Deformation analysis of Excavated Behind Ground by The Artificial Displacement Method (I) - Program Development and Verification - (강제변위법을 이용한 굴착배면지반의 변형해석(I) - 프로그램 개발 및 검증 -)

  • Yun, Jung-Mann;Han, Jung-Gun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.9-15
    • /
    • 2006
  • The numerical analysis program using artificial displacement method is developed to analyze the deformation behavior of excavated behind ground of retention wall. The elasto-plastic model suggested by Drucker-Prager was used to represent soil behavior and the model's solution was obtained from the return mapping method. To validate of the program, the predicted results by the numerical analysis and the measured results by a field test are compared. The results of numerical analysis showed good agreement with the measured results in field and theoretical values.

  • PDF

Characteristics of Forced Vibration System According to the Frequency of External Exciting Force (외부 가진력의 주파수에 따른 강제진동시스템의 특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.130-137
    • /
    • 2021
  • The characteristics of forced vibration by an external excitation force having a frequency were analyzed according to the amplitude and frequency of the excitation force. To obtain displacement, velocity, and acceleration, numerical analysis was performed to obtain the frequency response, and in particular, each FRF(Frequency Response Function) was analyzed to reveal the location of the system natural frequency and excitation frequency in the frequency domain. In the vibration model caused by external excitation, the natural frequency and distribution of the surrounding excitation mode in displacement, velocity and acceleration FRF. The FRF was also shown in the power spectrum and FRF of real and imaginary parts. The external excitation force was approximated with the excitation force of a sine wave by giving the amplitude and frequency, the mode generated by this excitation force could be distinguished. After numerical analysis by changing the equivalent mass, damping and stiffness, the forced vibration response characteristics by external excitation force were systematically analyzed.

FRF Analysis of a Vehicle Passing the Bump Barrier (둔턱 진행 차량의 주파수응답 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2022
  • The purpose of this study was to investigate the frequency characteristics of forced vibration considering the vehicle progress. And the vibration characteristics in frequency domain that occur, when vehicle passes the bump, were analyzed. The responses such as displacement, velocity and acceleration were obtained through numerical analysis, and FFT processing was performed to analyze the frequency response function(FRF) characteristics. In particular, the location of vehicle eigenmodes and external excitation modes was clearly shown and analyzed. In the forced vibration model by external force, the behavior of the eigenmode in power spectrum and real and imaginary parts were also analyzed. The mode characteristics were also analyzed in each FRF. It was approximated by assuming total excitation force by considering the exciting frequency using impulse and sine wave forces, which can give the amplitude and frequencies. The response characteristics of forced oscillations having different mass, damping and stiffness have been systematically discussed.

Wave Interpretation of Forced Vibration of Finite Cylindrical Shells (탄성파를 이용한 유한 원통셸의 강제진동 해석)

  • 길현권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • The forced vibration of a finite cylindrical shell has been analyzed from an elastic wave viewpoint. The displacement vector is used to formulate the vibration field, that is regarded as a superposition of disturbances due to elastic waves propagating on the shell. The reflection matrix is also used in the formulation of the vibration field, that is easily derived in the present approach. It allows one to easily identify the wave conversion of elastic waves at the ends of the shell. The present approach is used to predict the vibration field of the cylindrical shell with free-free boundary conditions. The contribution of each type of elastic waves into the vibration field was identified, and the wave conversion at the ends of the shell was observed. Those results showed that the present approach can be effectively used to analyze the forced vibration of the cylindrical shell from an elastic wave viewpoint.

  • PDF

Forced Vibration Testing of a Four-Story Reinforced Concrete Frame Building (철근콘크리트조 4층 골조건물의 강제진동실험)

  • Yu, Eun-Jong;Wallace, John W.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.27-38
    • /
    • 2007
  • A series of forced vibration tests and ambient vibration measurement was conducted on a four-story reinforced concrete building damaged in the 1994 Northridge earthquake. Both low amplitude broadband and moderate amplitude harmonic excitation were applied using a linear shaker and two eccentric mass shakers, respectively, and ambient vibrations were measured before and after each forced vibration test. Accelerations, interstory displacements, and curvature distributions were monitored using accelerometers, LVDTs and concrete strain gauges. Natural frequencies and the associated mode shapes fur the first 7 modes were identified. Fundamental frequencies determined from the eccentric mass shaker tests were 70% to 75% of the values determined using ambient vibration data, and 92% to 93% of the values determined using the linear shaker test data. Larger frequency drops were observed in the NS direction of the building, apparently due to damage that was induced during the Northridge earthquake.