Response Characteristics of Forced Vibration Model with Sinusoidal Exciting Force

정현파로 가진한 강제진동 해석과 응답특성

  • Kim, Jong-Do (Industry Academic Cooperation Foundation, Jungwon University) ;
  • Yoon, Moon-Chul (Department of Mechanical Design Engineering, Pukyung National University)
  • 김종도 (중원대학교 산학협력단) ;
  • 윤문철 (부경대학교 기계설계공학과)
  • Received : 2020.05.19
  • Accepted : 2020.07.20
  • Published : 2020.07.28


The characteristics of forced vibration with excited sinusoidal force was introduced. Also, numerical analyses and FRF in frequency domain were performed in detail. In this regard, the responses of displacement, velocity and acceleration were investigated in a forced vibration model. The FRF characteristics in real and imaginary part around natural frequency are also discussed. This response approach of forced vibration in time domain is used for the identification and monitoring of sinusoidal forced vibration. For acquiring a displacement, velocity and acceleration, a numerical technique of Runge-Kutta-Gill method was performed. For the FRF(frequency response function), These responses are used. Also, the FRF can represent the intrinsic characteristics of the forced vibration. These performed results and analysis are successful in each damped condition for the forced vibration model. After numerical analysis of the different mass, damping and stiffness, the forced vibration response characteristics with sinusoidal force was discriminated considering its amplitude and frequency simultaneously.

가진 정현파 강제력에 의한 강제 진동의 특성이 연구되었고 또한, 주파수 영역에서 FRF의 수치 분석을 자세히 수행하였다. 이와 관련하여 강제 진동 모델에서 변위, 속도 및 가속도의 응답을 구하였다. 고유 주파수 주변의 실수부와 허수부의 FRF 특성도 각 경우에 따라 구하였다. 시간 영역에서의 강제 진동의 응답분석은 정현파 강제 진동의 특성을 식별할 수 있다. 변위, 속도 및 가속도 등의 응답을 얻기 위해 Runge-Kutta-Gill 방법의 수치해석 기법을 수행하여 강제력 주파수에 따른 응답을 얻었고 이 주파수는 응답에 큰 영향을 미치지 않았다. 또한, FRF는 강제 진동의 고유 특성을 나타내고 있으며 이러한 강제 진동 모델의 각 감쇠 조건에서 이러한 응답분석을 성공적으로 자세하게 얻을 수 있었다. 상이한 질량, 감쇠 및 강성에 대한 수치 분석 후, 정현파 강제력에 의한 강제 진동 응답 특성을 강제력의 진폭 및 주파수를 동시에 고려하여 분석되었다.



  1. J. D. Kim, M. C. Yoon, S. J. Kim & B. S. Yang. (2010). Mode Analysis of Uncoupled System. Journal of Korean Society of Manufacturing Process Engineers, 9(3), 35-41.
  2. J. D. Kim & M. C. Yoon. (2010). Mode Analysis of Coupled System. Journal of Korean Society of Manufacturing Process Engineers, 9(3), 28-34.
  3. C. Steven Chapra. (2010). Applied Numerical Methods with MATLAB for Engineers and Scientists : McGraw-Hill.
  4. M. C. Yoon, J. D. Kim & K. H. Kim. (2006). Parametric modelling of uncoupled system. Journal of Korean Society of Manufacturing Process Engineers, 5(3), 36-42.
  5. M. C. Yoon, J. D. Kim & B. T. Kim. (2006). Parametric modelling of coupled system. Journal of Korean Society of Manufacturing Process Engineers, 5(3), 43-50.
  6. K. Kanazawa & K. Hirata. (2005). Parametric estimation of the cross-power spectral density. Journal of Sound and Vibration, 282, 1-35. DOI : 10.1016/j.jsv.2004.02.009
  7. S. M. Kay. (1990). Modern spectral estimation: theory and application : Prentice-Hill.
  8. L. Gaul. (1999). The influence of damping on waves and vibrations. Mechanical Systems and Signal Processing, 13(1), 1-30. DOI : 10.1006/mssp.1997.0185
  9. L. Ljung & T. Glad. (1999). Modeling of Dynamic Systems : Prentice-Hill.
  10. Y. Altintas. (2000). Manufacturing Automation : Cambridge University.
  11. S. S. Rao. (2011). Mechanical Vibrations(5th edition) : Prentice-Hill.
  12. M. Prandina. (2010). Spatial Damping Identification, PhD thesis, University of Liverpool.
  13. S. Nakamura. (1995). Applied Numerical Methods in C : Prentice Hall.