• Title/Summary/Keyword: 강인 적응 제어

Search Result 206, Processing Time 0.027 seconds

Design of an Adaptive Robust Nonlinear Predictive Controller (적응성을 가진 강인한 비선형 예측제어기 설계)

  • Park, Gee--Yong;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF

A Novel On-line MRAS Rotor Resistance Identification of Induction Motor Using Magnitude of Rotor Flux (MRAS를 이용한 유도전동기의 새로운 실시간 회전자 저항 추정 기법)

  • Lee, Seung-Myung;Kang, Shin-Won;Kim, Rae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.211-212
    • /
    • 2015
  • 본 논문에서는 MRAS(Model Reference Adaptive System)을 이용한 유도 전동기의 회전자 저항을 추정하는 방법을 제안하였다. 슬립 계산은 회전자 저항 값과 연관되어 있기 때문에, 잘못된 회전자 저항 값 정보는 벡터제어의 동특성을 저하시킬 수 있다. 따라서 회전자 저항 값을 정확히 측정 또는 추정이 매우 중요하다. 본 논문에서는 회전자 자속의 크기 기반의 MRAS를 바탕으로 회전자 자속 전압 모델을 기준 모델로 구성하고 회전자 자속 전류 모델을 적응 모델로 구성하는 방법을 제안하였다. 제안한 방법은 두 모델 사이의 오차 신호를 영으로 수렴하도록 적응 메커니즘을 구성하여 회전자 저항 값을 추정한다. 본 논문에서는 시뮬레이션을 통하여 제안된 방법의 타당성을 검증하였다.

  • PDF

Direct Torque Control of Squirrel Cage Typed Induction Motor Using Fuzzy Controller (퍼지제어기를 이용한 농형 유도 전동기의 직접 토크제어)

  • Han, Sang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • The direct torque control method of an inverter fed squirrel cage typed induction motor using fuzzy logic controller has been proposed. This method is suitable for the traction which requires a fast torque response during the star-up and step change. The fuzzy control algorithm based upon the control principles of conventional DSC(Direct Self Controller) is developed. The fuzzy algorithm is tarried out by defuzzification strategy of the fuzzy output extracted from the possibility distribution of an inferred fuzzy control rule. The flux and torque of an induction motor are estimated by the dynamic model of the rotor flux field-oriented scheme which has decoupling characteristics and excellent dynamic response over a wide speed range. The proposed controller shows a good dynamic response. Moreover, since the fuzzy controller possesses highly adaptive capability, the performance of fuzzy controller is quite robust and insensitive to the motor parameters and change of operation conditions.

Parameter Estimation of Induction Motor using Neural Network Theory (신경망이론을 이용한 유도전동기 파라미터 추정)

  • Oh, Won-Seok
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.56-65
    • /
    • 1998
  • In this paper, a neural network(NN) control system is proposed and practically implemented, which is adequate to the induction motor speed control system with frequent load variation. The back propagation neural network technique is used to provide a real adaptive estimation of the motor parameter. The error between the desired state variable and the actual one is back-propagated to adjust the motor parameter, so that the actual state variable will coincide with the desired one. Designed control system is based on PC-DSP structure for the purposed of easiness of applying NN algorithm. Through computer simulation and experimental results, it is verified that proposed control system is robust to the load variation and practical implementation is possible.

  • PDF

Design of a Robust Adaptive Backstepping Controller for a Chaos System with Disturbances (외란을 포함한 카오스시스템의 강인 적응 백스테핑 제어기 설계)

  • Hyun, Keun-Ho;Ka, Chool-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.119-128
    • /
    • 2005
  • In this paper, an robust adaptive backstepping controller is proposed for the chaos system with disturbances. This controller will be applicable to the chaos system of strict-feedback form and utilize the saturation function for decreasing the effect of disturbances derived from unmodelled dynamics and external noise. It shows that backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems (퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어)

  • Hwang, Young-Ho;Lee, Eun-Wook;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF

Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System (강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기)

  • Park, Ki-Kwang;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

A Robust Adaptive Nonlinear Control Design (강인 적응 비선형 제어 설계)

  • Kim, Dong-Hun;Kim, Eung-Seok;Hyun, Keun-Ho;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.703-705
    • /
    • 2000
  • In this paper, we design a robust adaptive controller for a nonlinear systems with uncertainties to be rejected via disturbance adaptation law. The nonlinear system considered in this paper has unknown nonlinear functions being influenced by external disturbance. The upper bounds of unknown nonlinear functions at each time is estimated by using disturbance adaptation law. The estimated nonlinear functions are used to design stabilizing function and control of input. Tuning function is used to estimate unknown system parameter without overparametrization. A set-point regulation error converges to a residual set close to zero asymptotically fast.

  • PDF

Robust Adaptive Position Control for Servomotor Drive Using Fuzzy-neural Networks (퍼지 뉴럴 네트워크를 이용한 서보모터 드라이브의 강인 적응 위치 제어)

  • Hwang, Young-Ho;Lee, An-Yong;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1834-1835
    • /
    • 2006
  • A robust adaptive position control algorithm is proposed for servomotor drive system with uncertainties and load disturbance. The proposed controller is comprised of a nominal controller and a robust control. The nominal controller is designed in the condition without all the external load disturbance, nonlinear friction and unpredicted uncertainties. The robust controller containing lumped uncertainty approximator using fuzzy-neural network(FNN) is designed to dispel the effect of uncertainties and load disturbance. The interconnection weight of the FNN can be online tuned in the sense of the Lyapunov stability theorem thus asymptotic stability of the proposed control system can be guaranteed. Finally, simulation results verify that the proposed control algorithm can achieve favorable tracking performance for the induction servomotor drive system.

  • PDF

Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer (외란 관측기를 이용한 비선형 시스템의 강인 적응제어)

  • Hwang, Young-Ho;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF