• Title/Summary/Keyword: 강인한 제어

Search Result 1,393, Processing Time 0.023 seconds

A Study on the SVC System Stabilization Using a Neural Network (신경회로망을 이용한 SVC 계통의 안정화에 관한 연구)

  • 정형환;허동렬;김상효
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.49-58
    • /
    • 2000
  • This paper deals with a systematic approach to neural network controller design for static VAR compensator (SVC) using a learning algorithm of error back propagation that accepts error and change of error as inputs, the momentum learning technique is used for reduction of learning time, to improve system stability. A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage.TO verify the robustness of the proposed method, we considered the dynamic response of generator rotor angle deviation, angular velocity deviation and generator terminal voltage by applying a power fluctuation and rotor angle fluctuation in initial point when heavy load and normal load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

Reversible Watermarking based Video Contents Management and Control technique using Biological Organism Model (생물학적 유기체 모델을 이용한 가역 워터마킹 기반 비디오 콘텐츠 관리 및 제어 기법)

  • Jang, Bong-Joo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.841-851
    • /
    • 2013
  • The infectious information hiding system(IIHS) is proposed for secure distribution of high quality video contents by applying optimized watermark embedding and detection algorithms to video codecs. And the watermark as infectious information is transmitted while target video is displayed or edited by codecs. This paper proposes a fast and effective reversible watermarking and infectious information generation for IIHS. Our reversible watermarking scheme enables video decoder to control video quality and watermark strength actively for by adding control code and expiration date with the watermark. Also, we designed our scheme with low computational complexity to satisfy it's real-time processing in a video codec, and to prevent time or frame delay during watermark detection and video restoration, we embedded one watermark and one side information within a macro-block. Experimental results verify that our scheme satisfy real-time watermark embedding and detection and watermark error is 0% after reversible watermark detection. Finally, we conform that the quality of restored video contens is almost same with compressed video without watermarking algorithm.

Network Adaptive ARQ Error Control Scheme for Effective Video Transport over IP Networks (IP 망을 통한 비디오 전송에 효율적인 망 적응적 ARQ 오류제어 기법)

  • Shim, Sang-Woo;Seo, Kwang-Deok;Kim, Jin-Soo;Kim, Jae-Gon;Jung, Soon-Heung;Bae, Seong-Jun
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.530-541
    • /
    • 2011
  • In this paper, we propose an effective network-adaptive ARQ based error control scheme to provide video streaming services through IP networks where packet error usually occurs. If time delay and feedback channel are allowed, client can request server to retransmit lost packets through IP networks. However, if retransmission is unconditionally requested without considering network condition and number of simultaneous feedback messages, retransmitted packets may not arrive in a timely manner so that decoding may not occur. In the proposed ARQ, a client conditionally requests retransmission based on assumed network condition, and it further determines valid retransmission time so that effective ARQ can be applied. In order to verify the performance of the proposed adaptive ARQ based error control, NIST-Net is used to emulate packet-loss network environment. It is shown by simulations that the proposed scheme provides noticeable error resilience with significantly reduced traffics required for ARQ.

Wireless TCP Enhancement by Modifying SNOOP (개선된 SNOOP 기법을 이용한 무선 TCP 성능향상 방안)

  • Mun Youngsong;Kang Insuk
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2005
  • Reliable transport protocols such as TCP are tuned to Perform well in traditional networks where packet losses occur mainly because of congestion. In a wireless network, however, packet losses will occur more often due to reasons such as the high bit error rate and the handoff rather than due to congestion. When using TCP over wireless network, TCP responds to losses due to the high bit error rate and the handoff by invoking congestion control and avoidance algorithms, resulting in the degraded end-to-end performance in the wireless network. There have been several schemes for improving TCP performance over wireless links. Among them, SNOOP Is a very promising scheme because of the localized retransmission. In this thesis, an efficient scheme is proposed by modifying SNOOP scheme. The invocation of congestion control mechanism is now minimized by knowing the cause of packet loss.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF

Development of an Artificial Neural Network Model for a Predictive Control of Cooling Systems (건물 냉방시스템의 예측제어를 위한 인공신경망 모델 개발)

  • Kang, In-Sung;Yang, Young-Kwon;Lee, Hyo-Eun;Park, Jin-Chul;Moon, Jin-Woo
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: This study aimed at developing an Artificial Neural Network (ANN) model for predicting the amount of cooling energy consumption of the variable refrigerant flow (VRF) cooling system by the different set-points of the control variables, such as supply air temperature of air handling unit (AHU), condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. Applying the predicted results for the different set-points, the control algorithm, which embedded the ANN model, will determine the most energy efficient control strategy. Method: The ANN model was developed and tested its prediction accuracy by using matrix laboratory (MATLAB) and its neural network toolbox. The field data sets were collected for the model training and performance evaluation. For completing the prediction model, three major steps were conducted - i) initial model development including input variable selection, ii) model optimization, and iii) performance evaluation. Result: Eight meaningful input variables were selected in the initial model development such as outdoor temperature, outdoor humidity, indoor temperature, cooling load of the previous cycle, supply air temperature of AHU, condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. The initial model was optimized to have 2 hidden layers with 15 hidden neurons each, 0.3 learning rate, and 0.3 momentum. The optimized model proved its prediction accuracy with stable prediction results.

A Study On Hardware Design for High Speed High Precision Neutron Measurement (고속 고정밀 중성자 측정을 위한 하드웨어 설계에 관한 연구)

  • Jang, Kyeong-Uk;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • In this paper, a hardware design method is proposed for high speed high precision neutron radiation measurements. Our system is fabricated to use a high performance A/D Converter for digital data conversion of high precision and high speed analog signals. Using a neutron sensor, incident neutron radiation particles are detected; a precision microcurrent measurement module is also included: this module allows for more precise and rapid neutron radiation measurement design. The high speed high precision neutron measurement hardware system is composed of the neutron sensor, variable high voltage generator, microcurrent precision measurement component, embedded system, and display screen. The neutron sensor detects neutron radiation using high density polyethylene. The variable high voltage generator functions as a 0 ~ 2KV variable high voltage generator that is robust against heat and noise; this generator allows the neutron sensor to perform normally. The microcurrent precision measurement component employs a high performance A/D Converter to precisely and swiftly measure the high precision high speed microcurrent signal from the neutron sensor and to convert this analog signal into a digital one. The embedded system component performs multiple functions including neutron radiation measurement for high speed high precision neutron measurements, variable high voltage generator control, wired and wireless communications control, and data recording. Experiments using the proposed high speed high precision neutron measurement hardware shows that the hardware exhibits superior performance compared to that of conventional equipment with regard to measurement uncertainty, neutron measurement rate, accuracy, and neutron measurement range.

Active Stabilization for Surge Motion of Moored Vessel in Irregular Head Waves (불규칙 선수파랑 중 계류된 선박의 전후동요 제어)

  • Lee, Sang-Do;Truong, Ngoc Cuong;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.437-444
    • /
    • 2020
  • This study was focused on the stabilization of surge motions of a moored vessel under irregular head seas. A two-point moored vessel shows strong non-linearity even in regular sea, owing to its inherent non-linear restoring force. A long-crested irregular wave is subjected to the vessel system, resulting in more complex nonlinear behavior of the displacement and velocities than in the case of regular waves. Sliding mode control (SMC) is implemented in the moored vessel to control both surge displacement and surge velocity. The SMC can provide a closed-loop system with performance and robustness against parameter uncertainties and disturbances; however, chattering is the main drawback for implementing SMC. The goal of minimizing the chattering and state convergence with accuracy is achieved using a quasi-sliding mode that approximates the discontinuous function via a continuous sigmoid function. Numerical simulations were conducted to validate the effectiveness of the proposed control algorithm.

A New Integral Variable Structure Regulation Controller for Robot Manipulators with Accurately Predetermined Output Performance (로봇 매니플레이터를 위한 정확한 사전 결정 출력 성능을 갖는 새로운 적분 가변구조 레귤레이션 제어기)

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.96-107
    • /
    • 2004
  • In this paper, a new integral variable structure regulation controller(IVSRC) is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to origin without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in oder to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems together with the closed loop stability. The design of the proposed IVSRC is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two link manipulator under parameter uncertainties and payload variations, in view of no reaching phase, no overshoot, predetermined response with prescribed accuracy, easy change of output performance, separation of design phase, and so on.

  • PDF

Performance Evaluation of Underwater Code Division Multiple Access Scheme on Forward-Link through Water-Tank and Lake Experiment (수조 및 저수지 실험을 통한 수중 코드 분할 다중 접속 기법 순방향 링크 성능 분석)

  • Seo, Bo-Min;Son, Kweon;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.2
    • /
    • pp.199-208
    • /
    • 2014
  • Code division multiple access (CDMA) is one of the promising medium access control (MAC) schemes for underwater acoustic sensor networks because of its robustness against frequency-selective fading and high frequency-reuse efficiency. As a way of performance evaluation, sea or lake experiment has been employed along with computer simulation.. In this study, we design the underwater CDMA forward-link transceiver and evaluate the feasibility aginst harsh underwater acoustic channel in water-tank first. Then, based on the water-tank experiment results, we improved the transceiver and showed the improvements in a lake experiment. A pseudo random noise code acquisition process is added for phase error correction before decoding the user data by means of a Walsh code in the receiver. Interleaving and convolutional channel coding scheme are also used for performance improvement. Experimental results show that the multiplexed data is recovered by means of demultiplexing at receivers with error-free in case of two users while with less than 15% bit error rate in case of three and four users.