Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.198-198
/
2020
기후 내적 변동성(Climate Internal Variability, CIV)은 기후를 이해하는 데 중요한 역할을 하며 기후예측에 있어 주요 불확실성 원인들 중 하나이다. 본 연구는 다양한 이산화탄소 배출 시나리오에 대해 CIV와 기후학적 평균(Climatological Mean, CM)을 추정하는 것을 목표로 한다. 확률론적 날씨생성기(Stochastic Weather Generator)를 이용하여 국내 40개 기상 관측소에 대해, 30년에 해당하는 시단위 시계열 100개 앙상블을 생성하였다. CIV는 Detrend 방법과 Differenced 방법을 이용하여 추정되었으며, noise 계산값과 비교하였다. 그 결과, CIV 값과 noise 값들 사이의 correlation이 매우 높았으며, 제시된 방법론이 신뢰할 수 있음을 검증하였다. 국내 40개 지역에 적용하여 계산된 CIV와 CM의 주요 결과는 다음과 같다. (1) 국내의 대부분의 지역에 있어 평균적으로 CM과 CIV는 미래에 증가할 것이며, 그 증가 정도는 RCP 8.5의 경우와 먼 미래END(2071-2100년) 기간에서 더 커질 것이다; (2) CM과 CIV의 미래 변화의 특성은 강수의 특성 지수에 따라 다르다. 강수량의 양을 나타내는 3개의 지수(총 강수량, totPr, 일 최대 강수량, maxDa 및 시간당 최대 강수량, maxHr)와 강수량의 발생일수를 나타내는 지수(무강우 일수, nonPr)의 특성은 크게 다르다. (3) CIV와 CM의 변화 요인들 사이의 관계를 조사하면 maxDa와 maxHr에 대해서는 그들 사이에 높은 상관관계가 있지만 다른 지수에는 그렇지 않다. (4) 국내에서 CIV 값이 공간적으로 변동성이 큰 경우는 계절적으로 여름이며, 이는 totPr 및 maxDa에서만 유효하다. 시단위 시계열 앙상블을 생성하여 추정된 기후내적변동성 정보는 기후 변화의 영향을 평가하고 적절한 적응 및 대응 전략을 개발하는 데 도움이 될 것이다.
Many researches illustrated that the magnitude and frequency of hydrological event would increase in the future due to changes of hydrological cycle components according to climate change. However, few studies performed quantitative analysis and evaluation of future rainfall in North Korea, where the damage caused by extreme precipitation is expected to occur as in South Korea. Therefore, this study predicted the extreme precipitation change of North Korea in the future (2020-2060) compared to the current (1981-2017) using stationary and nonstationary frequency analysis. This study conducted nonstationary frequency analysis considering the external factors (mean precipitation of JFM (Jan.-Mar.), AMJ (Apr.-Jun.), JAS (Jul.-Sept.), OND (Oct.-Dec.)) of the HadGEM2-AO model simulated according to the Representative Concentration Pathway (RCP) climate change scenarios. In order to select external factors that have a similar tendency with extreme rainfall events in North Korea, the maximum annual rainfall data was obtained by using the ensemble empirical mode decomposition (EEMD) method. Correlation analysis was performed between the extracted residue and the external factors. Considering selected external factors, nonstationary GEV model was constructed. In RCP4.5, four of the eight stations tended to decrease in future extreme precipitation compared to the present climate while three stations increased. On the other hand, in RCP8.5, two stations decreased while five stations increased.
An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
Journal of Korea Water Resources Association
/
v.57
no.2
/
pp.127-137
/
2024
Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.
Lee, Hyo-Sang;Jeon, Min-Woo;Balin, Daniela;Rode, Michael
Journal of Korea Water Resources Association
/
v.42
no.10
/
pp.773-783
/
2009
The effects of rainfall input uncertainty on predictions of stream flow are studied based extended GLUE (Generalized Likelihood Uncertainty Estimation) approach. The uncertainty in the rainfall data is implemented by systematic/non-systematic rainfall measurement analysis in Weida catchment, Germany. PDM (Probability Distribution Model) rainfall runoff model is selected for hydrological representation of the catchment. Using general correction procedure and DUE(Data Uncertainty Engine), feasible rainfall time series are generated. These series are applied to PDM in MC(Monte Carlo) and GLUE method; Posterior distributions of the model parameters are examined and behavioural model parameters are selected for simplified GLUE prediction of stream flow. All predictions are combined to develop ensemble prediction and 90 percentile of ensemble prediction, which are used to show the effects of uncertainty sources of input data and model parameters. The results show acceptable performances in all flow regime, except underestimation of the peak flows. These results are not definite proof of the effects of rainfall uncertainty on parameter estimation; however, extended GLUE approach in this study is a potential method which can include major uncertainty in the rainfall-runoff modelling.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.175-175
/
2018
우리나라에서 발생하는 대규모 자연재해의 상당부분은 강우에 의한 홍수피해이다. 최근 이러한 홍수피해는 기후변화와 더불어 극한강우 현상의 빈발에 의한 새로운 재해양상으로 전개되고 있으며, 이에 따라 정부에서도 재해발생시 원상복구의 개념이 아닌 항구복구의 개념으로 복구사업을 수행하고 있다. 그러나 설계에 기후변화에 대한 영향을 반영하고 있지 못하기 때문에 기후변화에 의하여 미래에 발생할 극한강우로 반복적인 피해가 예상되고 있으므로 기존의 방재성능목표 강우량의 설정 방법에 대한 개선이 필요하다. 전 세계적으로 이러한 기후변화에 의한 현상을 모의하기 위한 연구로 전지구기후모델(Global Climate Model, 이하 GCM)과 지역기후모델(Reginal Climate Model, 이하 RCM)을 사용하고 있다.우리나라 기상청에서도 CMIP5 국제사업의 표준 실험체계를 통해 전지구 기후변화 시나리오 산출을 위해서 영국 기상청 해들리센터의 GCM인 HadGEM2-AO를 도입하였다. 또한 한반도 기후변화 시나리오를 산출하기 위해 HadGEM3-RA 모형을 이용하여 전지구 기후변화 시나리오를 역학적으로 상세화하고 이를 한반도에 대해 12.5km 공간 해상도로 일 자료를 제공하고 있다. 하지만 유역규모 혹은 지점규모에서 사용하기 위해서는 이러한 일자료의 시 공간적인 상세화기법이 요구된다. 본 연구에서는 기후변화를 고려한 방재성능목표 강우량 개선 방향을 제안하기 위해 다양한 연구단에서 도출된 상세화 결과를 수집하고 비교분석을 통해 기후변화를 고려하고자 하였다. 다양한 연구기관에서 생산된 미래 확률 전망을 살펴본 결과, 동일한 GCM자료를 사용하더라도 상세화 방법론에 따라 서로 다른 결과가 도출되는 것을 확인하였다. 미래 예측의 불확실성을 고려하면 특정한 방법론이 우수하다고 평가하기는 어려움에 따라 앙상블 평균을 활용한 개선방향을 제안한다. 본 연구의 결과는 전국 지자체의 강우특성만을 고려한 것으로, 연안지역의 경우 해수면 상승을 고려하여 추가적인 대책이 필요할 것으로 판단된다.
Kim, Hanbeen;Kim, Taereem;Shin, Hongjoon;Heo, Jun-Haeng
Journal of Korea Water Resources Association
/
v.50
no.4
/
pp.253-261
/
2017
A lot of nonstationary frequency analyses have been studied in recent years as the nonstationarity occurs in hydrologic time series data. In nonstationary frequency analysis, various forms of probability distributions have been proposed to consider the time-dependent statistical characteristics of nonstationary data, and various methods for parameter estimation also have been studied. In this study, we aim to introduce a parameter estimation method for nonstationary Gumbel distribution using ensemble empirical mode decomposition (EEMD); and to compare the results with the method of maximum likelihood. Annual maximum rainfall data with a trend observed by Korea Meteorological Administration (KMA) was applied. As a result, both EEMD and the method of maximum likelihood selected an appropriate nonstationary Gumbel distribution for linear trend data, while the EEMD selected more appropriate nonstationary Gumbel distribution than the method of maximum likelihood for quadratic trend data.
Korea Water Resources Corporation(KOWACO) has developed the Integrated Real-time Water Management System(IRWMS) that calculates monthly optimal ending target storages by using Sampling Stochastic Dynamic Programming(SSDP) with Ensemble Streamflow Prediction(ESP) running on the $1^{st}$ day of each month. This system, however, has a shortcoming: it cannot reflect the hydrolmeteorologic variations in the middle of the month. To overcome this drawback, in this study updated ESP forecasts three times each month by using the observed precipitation series from the $1^{st}$ day of the month to the forecast day and the historical precipitation ensemble for the remaining days. The improved accuracy and its effect on the reservoir operations were quantified as a result. SSDP/ESP21 that reflects within-a-month hydrolmeteorologic states saves $1\;X\;10^6\;m^3$ in water shortage on average than SSDP/ESP01. In addition, the simulation result demonstrated that the effect of ESP accuracy on the reduction of water shortage became more important when the total runoff was low during the drawdown period.
KSCE Journal of Civil and Environmental Engineering Research
/
v.35
no.2
/
pp.327-340
/
2015
General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.
This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.308-308
/
2023
자연재해대책법 제 16조 6에 따라 기후변화로 인한 방재성능목표의 영향을 고려하기 위해 방재성능가이드라인을 설정하여 운영하고 있다. 2017년 공표된 기후변화를 고려한 방재성능목표 강우량의 단기 할증률은 CMIP5 자료를 기반으로 기본 5%, 관심 8%, 주의 10%의 할증률로 구분되어 적용되고 있다. 그러나, 미래 기후변화 시나리오에 따르면 확률강우량이 늘어나는 지역도 있지만, 감소될 것으로 예상되는 지역도 존재한다. 따라서, 모든 지역을 3개의 구간으로 나누어 증가 할증률을 적용하는 것에 대한 검토가 필요하다. 본 연구에서는 CMIP6 기후변화 자료를 시단위로 다운스케일링한 시계열을 이용하여 미래 기후변화로 인한 방재성능목표의 할증률을 산정하고, 각 할증률에 기반한 구간을 상세화하고자 한다. 구체적으로, 현재 기상청에서 제공하는 일단위 기후변화 데이터베이스와, CMIP6에서 제공하는 일단위 기후변화 자료를 구축하고, 분석하였다. 이후 구축된 일단위 자료를 시단위 자료로 Downscaling한 후, 각 이산화탄소 배출 시나리오인 SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5에 대해 앙상블 시계열을 생성하고, 다양한 기후변화의 불확실성을 적절하게 정량화 할 예정이다. 그중에서 방재성능목표와 가장 밀접하다고 생각되는 변수들(연강우량, 8월강우량, 연최대강우량, 30년빈도 확률강우량 등)을 CCF(Cross Correlation Function), ACC(Auto Correlation Function)방법 등을 통해 분석하여 최적의 변수들을 찾고, 그 값들의 앙상블 평균을 통해 안정된 방재성능목표 기후변화 할증률 값을 산정할 예정이다. 169개 지역의 시·군 단위의 티센망과, 238개 지역의 시·군·구 단위의 티센망을 구축하고, 기상청 ASOS(Automated Synoptic Observing System)의 69개 기상관측소 강우관측자료와 AWS(Automatic Weather System)의 419개 기상관측소를 활용하여 지역별 미래 기후변화를 고려한 비선형적 할증률를 제시할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.