• Title/Summary/Keyword: 강소성 유한요소 법

Search Result 88, Processing Time 0.023 seconds

A Study on the Criterion for Membrane/Shell Mixed Element and Application to the Rigid-Plastic/Elastic-Plastic Finite Element Analysis (박막/쉘 혼합요소의 판별조건과 강소성/탄소성 유한요소해석 적용에 관한 연구)

  • Jung, Dong-Won;Yang, Kyoung-Boo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.1-10
    • /
    • 1999
  • This study is concerned with the application of new criterion for membrane/shell mixed element in the rigid-plastic finite element analysis and elastic-plastic finite element analysis. The membrane/shell mixed element can be selctively adapted to the pure stretching condition by using membrane or a shell element in the bending effect areas. Thus, membrane/shell mixed element requires a efficient criterion for a distinction between membrane and shell element. In the present study introduce the criterion using the angle of between two element and confirm a generality of criterion from appling the theory to a rigid-plastic and elastic-plastic problems.

  • PDF

Rigid-Plastic Finite Element Analysis of Axisymmetric Forward Extrusion (강소성 유한요소법 을 이용한 축대칭 전방 압출 해석)

  • 양동열;오병수;이중홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.452-462
    • /
    • 1985
  • The axisymmetric forward extrusion is analyzed by using the rigid-plastic finite element formulation. The distribution of stresses and strains as well as the deformation pattern in solid extrusion is very important for the improvement of product quality. The initial velocity field is determined by assuming the material as a Newtonian fluid through an arbitrarily shaped axisymmetric die. The workhardening effect and the friction of the die-material interface are considered in the formulation. Some reduction of area and die shapes(conical and biquadratic-curved) are chosen for computation. Experiments are carried out for steel alloy(SCM4) specimens using conical and curved dies. It is found that experimental observation is in good agreement with FEM results. The strain distribution is curved(biquadratic) dies is shown to be more uniform than in conical dies at the same reduction of area.

Rigid-Plastic Finite Element Analysis of Axi-Symmetric Hydroforming with Controlled Pressure (유체압력이 제어되는 축대칭 하이드로포밍에 대한 강소성 유한요소 해석)

  • 양동열;권혁주;정완진;노태성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.571-580
    • /
    • 1990
  • The study is concerned with the analysis of axisymmetric hydroforming with controlled pressure by the rigid-plastic finite element method. The finite element method is employed to obtain the detailed information including the distribution of stresses and strains and geometry changes. Experiments are carried out for hydroforming of cold-rolled steel sheets with the developed CNC hydroforming press which is pressure-controlled according to the fluid pressure vs.-stroke relationship given by the upper bound. Four types of punches are used for the experiments. The computed results are in good agreements with the experimental observation in geometric change and thickness variation. The present analysis permits the prediction of stresses, strains, geometric changes. The effects of Lankford value and workhardening exponent on thickness strains in hydroforming are also discussed. It is thus shown that the present method can be applied to the effective design of axisymmetric hydrooforming processes.

Process Optimal Design in Steady-State Metal Forming by Finite Element Method-II Application to Die Profile Design in Extusion (유한요소법을 이용한 정상상태의 소성가공 공정의 최적설계-II)

  • 전만수;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.453-458
    • /
    • 1992
  • 본 연구에서는 유한요소법에 바탕을 둔 최적공정설계법을 이용하여 압출 금형 형상의 최적설계를 실시하였다.설계의 결과를 참고문헌에서 발췌한 이론해와 비교 하였으며, 축대칭 압출공정에서 압하율, 마찰, 재료특성 등이 금형의 최적형상에 미치 는 영향에 대하여 조사하였다.

Hybrid Method for Updating Geometry 3n Non-steady State Metal Forming Analysis by Rigid Plastic FEM (강소성 유한요소해석에 의한 비정상상태 금속성형 해석에서 형상 갱신을 위한 혼합법)

  • 최영;여홍태;허관도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.155-162
    • /
    • 2004
  • The volume of the metal is not changed for the plastic deformation. For metal forming simulation, rigid-plastic FEM codes are widely used. Updating geometry using Euler method in the simulation, the volume loss is occurred. In this paper, hybrid method is introduced to perform a more accurate simulation reducing computation time. In the proposed hybrid method, RK2 method is used for geometry updating at first time step and after the boundary condition of the node is changed. At the others, Adams-Bashforth or theta method is applied to update geometry. The results show that the simulations of upsetting and side-pressing can be performed within 0.02%.

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method (적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

A Study on the Acceleration of the Solution Convergence for the Rigid Plastic FEM (강소성 유한요소해석에서 해의 수렴 가속화에 관한 연구)

  • 최영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.347-350
    • /
    • 2004
  • In this paper, the acceleration is studied for the rigid-plastic FEM of metal forming simulation. In the FEM, the direct iteration and Newton-Raphson iteration are applied to obtain the initial solution and accurate solution respectively. In general, the acceleration scheme for the direct iteration is not used. In this paper, an Aitken accelerator is applied to the direct iteration. In the modified Newton-Raphson iteration, the step length or the deceleration coefficient is used for the fast and robust convergence. The step length can be determined by using the accelerator. The numerical experiments have been performed for the comparisons. The faster convergence is obtained with the acceleration in the direct and Newton-Raphson iterations.

  • PDF

Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis (부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF