• Title/Summary/Keyword: 강구조 설계

Search Result 658, Processing Time 0.023 seconds

An Evaluation on the Shear Strength for Different Forms of Shear Connector in T-type Composite Beam (T형 합성보의 시어 커넥터 형상에 따른 전단내력 평가에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.279-288
    • /
    • 2006
  • A stud connector was used by the shear connector of a composite beam. The shear connector is an important element in heightening the composition rate of a composite beam .study was based on the experiments conducted on 15 specimens using the push-out test.In this paper, through an experiment, the shear connector of other forms was analyzed instead of the stud connector. It is hoped that this application can be used in composite beams.

Evaluation of Rectangular Section Flutter Derivatives by CFD (CFD에 의한 사각단면의 플러터계수 산출)

  • Min, Won;Lee, Yong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.693-700
    • /
    • 2003
  • An evaluation method for flutter derivatives is proposed, using indicial functions of structural members produced by Computational Fluid Dynamics (CFD). Flutter derivatives are obtained by Fourier integration of indicial functions. Instead of direct simulation of oscillating objects, only the calculation of time-dependent lift and moment variations of fixed objects with constant attack angle are necessary.The Finite Element Method (FEM) is developed as a tool for the numerical method. For two rectangular sections having different aspect ratios, the numerical analysis and wind tunnel test are carried out to inspect the adequacy of this study. The results proved to be good, and they could be used for a preliminary design.

Eccentric Axial Load Test for Concrete-Filled Tubular Columns Encased with Precast Concrete (프리캐스트 콘크리트에 의해 피복된 콘크리트충전 강관기둥의 편심압축실험)

  • Lee, Ho Jun;Park, Hong Gun;Kim, Sung Bae;Park, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.31-42
    • /
    • 2014
  • In this paper, concrete-filled steel tubular columns encased with precast reinforced concrete were studied. Four eccentrically loaded columns and a concentrically loaded column were tested to investigate the axial load-carrying capacity. The test parameters were the use of fiber reinforcement for cover concrete, eccentricity, column length, and lateral reinforcement. The maximum axial loads of the specimens agreed with the nominal strengths predicted by KBC 2009. However, in some specimens, the load carrying capacity quickly decreased after the peak strength due to spalling of the cover concrete.

Evaluation on the Mechanical Properties of Fire Resistant Steels at High Temperature Conditions with Manufacturing Processes (제조 방식에 따른 건축용 내화강재의 고온 시 기계적 특성 평가)

  • Kwon, In Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.181-190
    • /
    • 2007
  • A fire-resistant steel with enhanced load-bearing capacity has been developed to enable structural elements such as columns and beams withstand exposure to severe fire conditions. To precisely evaluate the fire-resistant performance of structural elements that compose fire-resistant steels, mechanical properties such as yield strength and elastic modulus are essential. To obtain the mechanical database of fire-resistant steels at high temperatures, tensile tests at high temperatures were conducted on steels of two kinds of thicknesses. The results showed that the thickness difference could not affect the mechanical properties at a high temperature.

Optimization Design Process of Diagrid Node for Tall buildings (초고층 다이아그리드 노드의 최적설계과정)

  • Kim, Sang-Dae;Bae, Jae-Hoon;Ju, Young-Kyu;Kim, Young-Ju;Kim, Do-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.211-220
    • /
    • 2011
  • The diagrid structure is now one of the trends in tall-building structures. It is preferred not only because of its distinctive appearance but also because of its structural advantages. There are few diagrid buildings that actually exist, however, because of the nodes, which are difficult to make and cost too much. In this study, a node-type diagrid building material with a more efficient structure but with fewer diagrid nodes, fabricated using the finite element method, was proposed and validated via experimentation.

Buckling Behaviors of Plate Girder with Corrugated Steel Web (파형 복부판을 갖는 플레이트 거더의 좌굴거동)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.221-228
    • /
    • 2011
  • Because steel plate girder bridge has big slenderness ratio, buckling is a major design factor. The objective of this study is to analyze the buckling behaviors of plate girder with I-girder and corrugated steel web and to examine the advantages of plate girder with corrugated steel web. Various parametric study according to the change of web height, web thickness, and load condition are examined. It is shown that plate girder with corrugated steel web is more effective than plate girder with I-girder and proper corrugated angle(${\theta}$) is $15^{\circ}{\sim}22^{\circ}$.

Seismic Performance Evaluation of Freeform Diagrid System (비정형 Diagrid System의 내진성능 평가)

  • Ko, Chang-Kyun;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2011
  • Many new structural systems have been developed to build free-form structures, which is the new architectural trend for aesthetic beauty. The diagrid system resists both gravity and later loads, with its perimeter-diagonal columns. In the current seismic-design provisions, however, a seismic-performance factor for a new structural system has not yet been provided. ATC-63 provides a new methodology for defining various seismic-performance factors, including the response modification factor. In this paper, nonlinear static and dynamic analyses were conducted for the 3D diagrid frame, with each load applied at $0-180^{\circ}$ degrees. Through these analyses, the seismic performance of the diagrid system was evaluated.

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.

Design Thermal Loads In Composite Box Girder Bridges (합성형교량의 설계온도하중)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.537-551
    • /
    • 1998
  • The intention of this paper is to provide realistic values of design thermal loads applicable to composite box girder bridges on the basis of the statistical analysis of long-term measured temperature data. For this purpose, temperatures were recorded at a newly constructed composite box girder bridge during about 20 months. Before analyzing the extreme values, major thermal loading parameters that characterize the temperature profile are defined, and a seasonal behavior of those is examined in detail. The limit distributions of the thermal loading parameters are then determined by the tail-equivalence method, and the thermal loading parameters corresponding to selected return period are calculated. Finally, the results are compared to the specifications suggested in a current design code for thermal loads, and it is concluded that the current design code is unsuitable for representing the self-equilibrated thermal stresses in composite bridges, and the horizontal temperature difference which is not suggested in current design code should be taken Into account in particular cases.

  • PDF

Analysis and Design of Support Strut in Innovative Prestressed Scaffolding(IPS) System (혁신적 프리스트레스트 가시설 구조시스템(IPS)에 적용되는 중간 버팀보의 해석 및 설계)

  • Kim, Sung Bo;Han, Man Yop;Kim, Moon Young;Kim, Nak Kyung;Han, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.627-636
    • /
    • 2005
  • The analysis and design procedure of intermediate support strut for the innovative prestressed scaffolding (IPS) system was presented in this paper. The stability check of intermediate support strut is required as the behavior of the strut system is similar to that of the built-up column. The computer analysis model of the support strut was constructed for in-plane and out-of-plane buckling analysis, and the design of the support strut was performed. Using the eigenvalue for the buckling load and the member forces of support strut under design earth pressure, the effective buckling length was estimated. The allowable axial and bending stresses were calculated considering the effective buckling length. The combined stresses due to these axial forces and bending moment were estimated to be satisfied the safety condition of the intermediate support strut.