본 논문에서는 컬러 영상에 대해 삼각형 타입의 소속 함수를 적용하여 스트레칭의 상한과 하한을 동적으로 설정하고 영상을 스트레칭 하는 방법을 제안한다. 제안된 퍼지 스트레칭 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀 값의 거리를 계산하여 밝기의 조정율을 결정한 후, 최소 밝기 값 및 최대 밝기 값을 구하고 삼각형 타입 소속 함수의 구간에 적용한다. 영상의 픽셀 값들을 소속 함수에 적용하여 소속도를 구하고 cut를 적용하여 가장 낮은 픽셀 값을 스트레칭 하한으로 가장 높은 픽셀 값을 스트레칭 상한으로 설정하여 컬러 영상을 스트레칭 한다. 다양한 영상에 적용한 결과, 기존의 스트레칭 방법보다 제안된 퍼지 스트레칭 방법이 효율적인 것을 확인하였다.
DoS 공격은 증가하고 있지만 비용이 많이 들다보니 제대로 된 방어를 하지 못 하고 공격을 당하는 경우도 많다. 저렴한 DoS 방어 시스템의 필요성이 절실하다. 본 논문에서는 저 대역폭 DoS 공격을 방어하는 시스템 개발을 하고자 한다. 방어시스템의 물리적 구조는 듀얼 홈 게이트웨이 구조를 사용하며, DoS 탐지 방법으로는 일반적인 상황에서의 인 바운드되는 프로토콜별 패킷의 값을 세어 그 값을 평균값과 비교하여 탐지하며, 1초 단위로 IP와 SYN, FIN 플래그 값을 세어 그 값을 평균값과 비교하여 탐지하며, 2초 단위로 IP와 SYN, FIN 플래그 값을 세어 임계값을 넘어서면 차단하는 방식을 사용한다.
본 논문에서는 협력하고자하는 소출력 기기들이 협력 스펙트럼 센싱 할 경우 협력 노드들이 같은 FA(False Alarm)가지고 있다 가정하며, 이때 최적의 임계값을 셋팅하고 서로 정보를 공유하는 시스템 모델을 제안하고 성능을 분석한다. 협력하고자하는 모든 노드의 False alarm이 같아도 각 채널에 따라 임계값이 달라지게 된다. 임계값이 낮아지면 검출확률이 낮아지게 되고, 반대로 임계값이 높을 때 검출확률은 높아지는 특성을 가지기 때문에, 따라서 가장 높음 임계값을 선택하여 세팅하고 공유하게 된다. 이는 협력스펙트럼 센싱시 가장 높은 임계값을 공유함으로써 고정되어 있는 임계값을 보다 높은 검출성능을 보일 수 있다.
본 논문에서는 다양한 영상에서 객체들의 정보 손실을 최소화한 상태에서 영상을 이진화하기 위해 ${\alpha}-cut$을 동적으로 설정하는 개선된 퍼지 이진화 방법을 제안한다. 제안된 퍼지 이진화 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀 값의 거리를 계산하여 소속 함수의 구간을 설정한다. 그리고 소속 함수에서 소속도를 구한 후, 영상을 이진화 하기 위해 최대 밝기 값에서 중간 밝기 값을 나눈 값을 ${\alpha}-cut$값으로 설정한 후에 구간 임계치를 이용하여 영상을 이진화 한다. 제안된 퍼지 이진화 방법의 효율성을 확인하기 위해 다양한 영상을 대상으로 실험한 결과, 기존의 퍼지 이진화 방법보다 객체와 배경 사이의 명암도가 한쪽에 치우친 분포를 가진 영상과 넓게 분포된 영상에서 모두 객체들의 정보의 손실이 적은 상태에서 이진화되는 것을 확인할 수 있었다.
본 논문에서는 연관규칙 탐사에서 발견된 대량의 패턴 중에서 의미있는 패턴을 효과적으로 추출하기 위한 텍스트마이닝 기법을 제시하였다. Agrawal 등이 제안한 R-interesting 값을 수용하여 의미있는 패턴을 추출하기 위한 방법이다 대량의 연관규칙중에서 특정 분야에서 추출된 패턴의 빈도수와 다른 분야의 빈도수의 비율에 따른 $\chi$$^2$값의 A셀에 대한 기여도와 R 값을 비교한 결과 빈도수가 같더라도 다른 분야에 나타나는 비율이 높을수록 기여도와 R 값은 낮게 나타났다. 또한 특정 분야에만 나타나는 패턴에 대해서 빈도수에 따른 기여도와 R 값은 빈도수가 높을수록 기여도는 높아지고 R 값은 변화가 없었다. 이 결과를 이용하여 R 값이 같은 경우 빈도수가 높은 순으로 의미있는 패턴을 추출할 수 있었다.
MIV(MPEG Immersive Video)의 시험모델 TMIV 는 다시점의 비디오와 깊이(depth) 비디오를 입력 받아 시점 사이의 중복성을 제거한 후 남은 텍스처(texture)와 깊이로 텍스처 아틀라스(atlas)와 깊이 아틀라스를 각각 생성하고 이를 압축한다. 각 화소별 점유(occupancy) 정보는 깊이 아틀라스에 포함되어 압축되는데 압축 손실로 인한 점유맵 오류를 방지하기 위하여 임계값 T = 64 로 설정한 보호대역을 사용한다. 기존에 설정된 임계값을 낮추어 깊이 동적범위를 확대하면 보다 정확한 깊이값 표현으로 부호화 효율을 개선할 수 있지만 보호대역 축소로 점유맵 오류가 증가한다. 본 논문에서는 TMIV 의 부호화기와 보호화기에 비대칭 임계값을 사용하여 보호대역 축소로 인한 점유맵 오류를 보정하면서 보다 정확한 깊이 값 표현을 통하여 부호화 효율을 개선하는 기법을 제안한다. 제안기법은 깊이 동적범위 확대와 비대칭 임계값 기반의 점유맵 오류 보정을 통하여 CG 시퀀스에서 2.2% BD-rate 이득과 주관적 화질 개선을 보인다.
본 논문에서는, 영상 분류 문제에서 손실 값 계산 시 정답 부류를 제외한 나머지 부류에서 우세한 결괏값이 나오지 않도록 평활화하는 보조적인 손실함수를 고안한다. 합성곱 신경망 구조를 이용해 학습이 진행되면 손실함수가 작아지는 방향으로 가중치가 갱신되기 때문에, 정답을 제외한 나머지 부류들의 결괏값은 줄어든다. 하지만, 정답을 제외한 나머지 부류들 사이의 상대적인 값이 고려되지 않고 손실함수가 줄어들기 때문에 값들은 균일하지 않게 되고, 정답 부류와 유사한 특징을 가진 부류들의 값이 상대적으로 커지게 된다. 이는 정답 부류와 나머지 부류 중 가장 값이 큰 부류 사이에 공통의 특징을 공유한다고 생각할 수 있다. 정답 부류만이 가지고 있는 고유의 특징을 추출하지 못하고, 다른 부류도 가지고 있는 특징의 흔적이 남아있게 됨으로써 테스트 시 소스 도메인과 전혀 다른 도메인의 영상이 보일 때 그러한 특징이 부각 되어 부정확한 결과를 초래하게 된다. 본 논문에서는 단순한 손실함수의 추가로 도메인이 다른 환경에서 기존의 연구보다 좋은 분류 결과를 보여주는 것을 실험을 통해 확인하였다.
미혼여성과 기혼여성을 대상으로 인체계측을 실시하여 직접 계측치와 지수치를 이용하여 주축요인분석을 한 결과 도출된 인자를 독립변수로 군집분석을 한 하반신 체형변인과 직물에 의한 플레어 스커트의 외관형상을 분석하기 위하여 영상처리를 이용하여 착용실험을 한 결괴는 다음과 같다. 1. 플레어 스커트의 헴라인 단면형상 분석 결과 체형변인에 의한 플레어 스커트의 드레이프 면적과 드레이프 계수는 드레이프의 면적이 크면 드레이프 계수도 큰 값을 나타내었다. 직물의 노드수는 드레이프성이 좋을수록 많이 형성되고 노드수가 많으면 노드지수 값은 작은 값을 가진다. 노드지수 값이 크면 노드의 고저가 균일하게 나타나고 작으면 노드의 고저가 불균일하게 나타난다. 또한 인체 측정치수의 허리둘레와 엉덩이둘레의 차이, 허리너비와 엉덩이너비의 차이 값이 큰 마름모형 체형변인에서 노드수는 많이 나타나고 노드지수 값은 작게 나타났다. 통형에 가까운 체형변인은 노드지수가 큰 값을 나타내므로 노드의 고저가 균일하게 나타났다. 직물의 노드수가 많으면 노드산 평균은 낮고, 노드지수 값이 큰 반면 노드수가 작으면 노드산펑균이 높으므로 노드산과 곡의 고저가 심하게 나타났다. 그러므로 직물의 드레이프성이 우수하다 할지라도 적정의 중량을 가지지 않으면 노드가 불균일하게 형성되어 의복 외관의 좋은 외관형상을 형성하지 못하는 결점이 나타나는 것으로 해석되었다. 2. 플레어 스커트의 헴라인 단면의 최대횡경은 인체측정값의 너비항목과 최대종경은 두께항목과 관련성이 높은 것으로 나타났다. 단면비의 값이 크면 최대횡경의 값이 크고 최대종경의 값이 작은 타원형에 가까운 단면형상이 나타나고, 단면비의 값이 작으면 최대횡경 값이 작고 최대총경 값이 큰 원형에 가까운 단변형상으로 나타났다. 3. 플레어 스커트의 외관형상 분석 결과 정면처짐분은 둘레항목, 너비항목 시아항목의 차이 값이 작을수록, 직물의 드레이프성이 좋을수록 크게 나타났다. 미혼여성과 기혼여성을 비교해 보면 기혼여성의 체형이 너비, 둘레항목사이의 치어 값이 적기 때문에 처짐분이 크게 나타났다. 측면처짐분은 인체측정값의 두께항목과 상관이 깊어 앞부분은 배두께가 클수록, 뒷부분은 엉덩이두께가 클수록 처짐분량이 크게 나타났다. 후면처짐분은 정면과 같이 S시료에서 드레이프성이 좋을수록 처짐분이 크고, 엉덩이너비는 크고, 엉덩이두께가 작올수록 처짐분이 크게 나타났다. 4. 플레어 스커트의 3차원 입체형상은 외관형상의 굴곡이 낮아 평평할 수록 이미지의 평균값은 높고 편차는 낮게 나타났다. 체형변인에 의한 플레어 스커트의 주름 형상을 정면, 측면, 후면에서 이미지 값 분포로 비교해 보면 정면, 후면보다 측면의 외관이 평활하여 이미지 분포폭이 좁게 나타나고 최빈값을 중심으로 회색에 가까운 쪽으로 치우쳐 있는 것을 불 수 있다. 5. 체형변인에 따른 플레어 스커트의 주름특성을 평가하기 위하여 영상처리법으로 얻은 결과를 3차원 업체형상으로 분석하기 위하여 6개의 영역을 측정한 결과 플레어 스커트는 체형유형에 따라 곡면을 형성하는 주름의 수와 주름강도가 다르게 나타나 위 아랫부분의 주름폭은 차이가 있었다. 위부분에서 아랫부분으로 내려올수록 주름높이 폭은 커졌다. 그러므로 주름의 높이와 플레어 스커트의 헴라인 단연형상의 노드각도와 밀접한 관련이 있는 것으로 나타났다. 즉, 주름의 높이가 높으면 노드 각도는 작은 값을 보이고, 주름의 높이가 낮으면 노드각도는 큰 값을 나타내었다.
본 논문에서는 그리드 코드에서 요구하는 반주기 실효치 계산 방식을 국내 계통에 적용하기 위한 실효값(RMS) 계산 알고리즘을 제안한다. 정확한 실효값을 계산하기 위해서는 국내 계통 60Hz에 적합한 샘플링 주파수가 적용되어야 한다. 따라서 기존의 실효값 계산 알고리즘과 제안하는 실효값 알고리즘을 시뮬레이션 및 실험데이터를 제시하고, 속응성 및 오차 특성을 비교 제시한다.
본 연구에서는 서로 다른 센서간의 영상 자료 융합을 위하여 Dempster-Shafer 기법을 제안하고 있다. 제안 된 Dempster-Shafer 기법은 불확실성의 최소 값을 대표하는 Belief 함수와 불확실성의 최대 값을 나타내는 Plausibility 함수를 사용한다. 이러한 두 함수의 차이는 Belief Interval 로 정의되며 이 값은 분석 대상에 존재하는 불확실 정도의 Measure 로 사용되며 Evidence Combination의 이론에 근거하여 서로 다른 센서간의 자료 융합이 가능하며 분류 결과로 클래스 맵 뿐 만 아니라 분류 결과에 대한 불확실성 정도를 나타내는 Belief 함수 값과 Plausibility 함수 값을 생성하여 분류 결과에 대한 보충적인 분석을 가능하게 하여 사용자의 분석 정확성을 증대 시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.