• Title/Summary/Keyword: 감정 학습

Search Result 398, Processing Time 0.029 seconds

Brainwave Activities of the Cognitive Individual Differences in Computerized Arithmetic Addition by Implicit Association Test (컴퓨터 덧셈학습의 인지적 개인차에 대한 암묵적 연합검사를 적용한 뇌파 분석)

  • Kwon, Hyung-Kyu
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.4
    • /
    • pp.635-644
    • /
    • 2011
  • This research analyzed the brainwave activities and brain hemispherity to find out any implications to design the connections between the activities of the brain function and the computerized arithmetic addition in two difficulty levels: easy: 1-5 vs. hard: 6-9. Thus, in developing the brain based math learning for the computer education by implicit association test(IAT) indicated the significant results for the exclusive brain location and the brain hemispherity on the theta, alpha, low alpha, beta brainwaves by QEEG analysis. The results of this study physiologically supported the theoretical background for the computerized math learning skills as well as the math learning material development. It shows the difficulty levels of math information education and the brain activities on cognitive process of the learner continued on the possible investigation of the brain science.

  • PDF

Applying of SOM for Recognition to Tension and Relaxation in a Scrolling-Shooter Game (비행슈팅게임에서 게이머의 긴장이완 상태를 인식하기 위한 SOM의 적용)

  • Jeong, Chan-Soon;Ham, Jun-Seok;Park, Jun-Hyoung;Yeo, Ji-Hye;Ko, Il-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.169-172
    • /
    • 2009
  • 본 논문은 SOM을 이용하여 비행슈팅게임을 하는 게이머의 긴장과 이완상태를 학습한다. 학습된 SOM을 이용해 게이머의 새로운 심박데이터가 입력되었을 때 긴장과 이완 상태에서 플레이하는 게이머의 인식을 제안한다. 게이머들은 비행슈팅게임을 플레이하면서 게임 환경들의 패턴들에 익숙해진다. 게이머들은 반복하면서 지루해지면서 자연스럽게 긴장감도 떨어지게 된다. 만약 긴장이완 정도를 알 수 있다면 게이머의 상태에 맞게 게임환경을 조절하여 긴장감을 유지할 수 있을 것이다. 본 연구에서는 비행슈팅게임을 하는 게이머의 심박신호를 이용하여 게이머의 긴장이완상태를 신경망 SOM으로 분류한다. SOM은 주어진 입력패턴에 정확한 답을 정해주지 않고 자기 스스로 학습하여 해답을 찾는 신경망중의 하나이다. 따라서 게이머의 심박신호는 SOM 학습을 통해 게이머의 긴장과 이완상태들을 군집화 할 수 있다. 비행슈팅게임을 20회 반복 플레이하여 SOM으로 게이머의 심박신호를 입력해 본 결과 긴장이완상태를 인식 할 수 있었다.

  • PDF

An Empirical Study on Factors Influencing the Learning Effects of E-Learning : The Case of E-Learning Service of 'P' Company (기업 E-Learning 교육효과에 영향을 미치는 요인에 관한 연구 : P사의 E-Learning 서비스 사례를 중심으로)

  • Choi Hyuk-Ra
    • The Journal of Society for e-Business Studies
    • /
    • v.10 no.2
    • /
    • pp.59-88
    • /
    • 2005
  • The recent development of IT, consolidation of communications and multimedia technology have brought enormous changes in many organizations. These changes are enabling the new educational environments such as distance learning and virtual education. Particularly e-Learning has grown rapidly in business training fields. In this regard, the primary purpose of this study is to investigate which factors of e-Learning influence education and training in business organizations through an empirical survey. The results show that most of hypotheses get significant support. Implications of these findings are discussed for researchers and practitioners.

  • PDF

A Study on Low Power Design of SVM Algorithm for IoT Environment (IoT 환경을 위한 SVM 알고리즘 저전력화 방안 연구)

  • Song, Jun-Seok;Kim, Sang-Young;Song, Byung-Hoo;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.73-74
    • /
    • 2017
  • SVM(Support Vector Machine) 알고리즘은 대표적인 기계 학습 분류 알고리즘으로 감정 분석, 제스처 인식 등 다양한 분야의 문제를 해결하기 위해 사용되고 있다. SVM 알고리즘은 분리경계면(Hyper-Plane) 또는 분리경계면 집합 중 지지벡터(Support Vector)라 불리는 특정한 점들로 이루어진 두 그룹 간의 거리 차이(Margin)를 최대로 하는 분리경계면을 이용하여 데이터를 분류하는 알고리즘이다. 높은 정확도를 제공하지만 처리 속도가 느리며 학습을 위해 대량의 데이터 및 메모리가 필요하기 때문에 자원이 제한적인 IoT 환경에서 사용이 어렵다. 본 논문에서는 자원이 제한된 IoT 노드를 기반으로 효율적으로 데이터를 학습하기 위해 K-means 알고리즘을 이용하여 SVM 알고리즘의 저전력화 방안을 연구한다.

  • PDF

Reactive Learning Inference System Considering Emotional Factor (감정적 요소를 고려한 반응학습 추론 시스템)

  • 심정연
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1107-1111
    • /
    • 2004
  • As an information technology is developed, more intelligent system considering emotional factor for implementing the personality is required. In this paper, Reactive Learning Inference System considering emotional factor is proposed. Emotional Facter(E) is defined for a criterion for representing the personal preference. This system is designed to have functions of Reactive filtering by Emotional factor, Incremental learning, perception & inference and knowledge retrieval. This system is applied to the area for analysis of customer's tastes and its performance is analyzed and compared.

얼굴 표정 인식 기술

  • Heo, Gyeong-Mu;Gang, Su-Min
    • ICROS
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2014
  • 얼굴 표정 인식은 인간 중심의 human-machine 인터페이스의 가장 중요한 요소 중 하나이다. 현재의 얼굴 표정 인식 기술은 주로 얼굴 영상을 이용하여 특징을 추출하고 이를 미리 학습시킨 인식 모델을 통하여 각 감정의 범주로 분류한다. 본 논문에서는 이러한 얼굴 표정 인식 기술에 사용되는 표정 특징 추출 기법과 표정 분류 기법을 설명하고, 각 기법에서 많이 사용되고 있는 방법들을 간략히 정리한다. 또한 각 기법의 특징들을 나열하였다. 또한 실제적 응용을 위해서 고려해야할 사항들에 대하여 제시하였다. 얼굴 표정 인식 기술은 인간 중심의 human-machine 인터페이스를 제공할 뿐만 아니라 로봇 분야에서도 활용 가능할 것으로 전망한다.

Comparison and Analysis of Facial expression Database (얼굴 표정 데이터베이스 비교 및 분석)

  • Kim, Sesong;Kim, Dong-Wook;Jung, Seung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.686-687
    • /
    • 2017
  • 인간의 감정인식의 학습에 사용되는 얼굴 표정 데이터베이스를 조사하고 이를 비교 및 분석하여 사용자가 각자의 연구에 알맞은 데이터베이스를 이용하여 연구할 수 있는 안목을 제시한다.

Development of a Network-based Collaborative Learning System for Education of Information Ethics (정보통신윤리교육을 위한 네트웍 기반 협력학습 시스템의 설계 및 구현)

  • Song, Tae-Ok;Chung, Sang-Wook;Kim, Tae-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.4 no.1
    • /
    • pp.43-52
    • /
    • 2001
  • The aim of this paper is to develop a network-based collaborative learning system based on cooperative learning, computer simulation, role playing, and web-based instruction, which is called NetClass. It is an educational system of hybrid-type, and supports three learning modes as a distributed network, a stand-alone system, or a web browser. To accomplish the purpose of this paper, we have studied on the following topics. First, we selected appropriate learning contents among dilemmas on information ethics. Second, a Collaborative Dilemma-solving Learning Model (CDLM) was designed, and this model means systematic procedures that leaners can notice others' feeling and thinking and predict the results of his actions by introducing interactions among learners on computer networks. Third, Collaborative Learning System Model based on standard architecture of an educational system was proposed. Fourth, we developed many components such as network components, database components, and interface components.

  • PDF

Sensitivity Identification Method for New Words of Social Media based on Naive Bayes Classification (나이브 베이즈 기반 소셜 미디어 상의 신조어 감성 판별 기법)

  • Kim, Jeong In;Park, Sang Jin;Kim, Hyoung Ju;Choi, Jun Ho;Kim, Han Il;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • From PC communication to the development of the internet, a new term has been coined on the social media, and the social media culture has been formed due to the spread of smart phones, and the newly coined word is becoming a culture. With the advent of social networking sites and smart phones serving as a bridge, the number of data has increased in real time. The use of new words can have many advantages, including the use of short sentences to solve the problems of various letter-limited messengers and reduce data. However, new words do not have a dictionary meaning and there are limitations and degradation of algorithms such as data mining. Therefore, in this paper, the opinion of the document is confirmed by collecting data through web crawling and extracting new words contained within the text data and establishing an emotional classification. The progress of the experiment is divided into three categories. First, a word collected by collecting a new word on the social media is subjected to learned of affirmative and negative. Next, to derive and verify emotional values using standard documents, TF-IDF is used to score noun sensibilities to enter the emotional values of the data. As with the new words, the classified emotional values are applied to verify that the emotions are classified in standard language documents. Finally, a combination of the newly coined words and standard emotional values is used to perform a comparative analysis of the technology of the instrument.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.53-59
    • /
    • 2021
  • In this paper, we propose a BERGPT-chatbot, a domestic AI chatbot that can alleviate negative emotions based on text input such as 'Replika'. We made BERGPT-chatbot into a chatbot capable of mitigating negative emotions by pipelined two models, KR-BERT and KoGPT2-chatbot. We applied a creative method of giving emotions to unrefined everyday datasets through KR-BERT, and learning additional datasets through KoGPT2-chatbot. The development background of BERGPT-chatbot is as follows. Currently, the number of people with depression is increasing all over the world. This phenomenon is emerging as a more serious problem due to COVID-19, which causes people to increase long-term indoor living or limit interpersonal relationships. Overseas artificial intelligence chatbots aimed at relieving negative emotions or taking care of mental health care, have increased in use due to the pandemic. In Korea, Psychological diagnosis chatbots similar to those of overseas cases are being operated. However, as the domestic chatbot is a system that outputs a button-based answer rather than a text input-based answer, when compared to overseas chatbots, domestic chatbots remain at a low level of diagnosing human psychology. Therefore, we proposed a chatbot that helps mitigating negative emotions through BERGPT-chatbot. Finally, we compared BERGPT-chatbot and KoGPT2-chatbot through 'Perplexity', an internal evaluation metric for evaluating language models, and showed the superity of BERGPT-chatbot.