• Title/Summary/Keyword: 감정 모델

Search Result 497, Processing Time 0.04 seconds

Music player using emotion classification of facial expressions (얼굴표정을 통한 감정 분류 및 음악재생 프로그램)

  • Yoon, Kyung-Seob;Lee, SangWon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.243-246
    • /
    • 2019
  • 본 논문에서는 감성과 힐링, 머신러닝이라는 주제를 바탕으로 딥러닝을 통한 사용자의 얼굴표정을 인식하고 그 얼굴표정을 기반으로 음악을 재생해주는 얼굴표정 기반의 음악재생 프로그램을 제안한다. 얼굴표정 기반 음악재생 프로그램은 딥러닝 기반의 음악 프로그램으로써, 이미지 인식 분야에서 뛰어난 성능을 보여주고 있는 CNN 모델을 기반으로 얼굴의 표정을 인식할 수 있도록 데이터 학습을 진행하였고, 학습된 모델을 이용하여 웹캠으로부터 사용자의 얼굴표정을 인식하는 것을 통해 사용자의 감정을 추측해낸다. 그 후, 해당 감정에 맞게 감정을 더 증폭시켜줄 수 있도록, 감정과 매칭되는 노래를 재생해주고, 이를 통해, 사용자의 감정이 힐링 및 완화될 수 있도록 도움을 준다.

  • PDF

Generative AI based Emotion Analysis of Consumer Reviews Using the Emotion Wheel (생성 AI 기반 감정 수레바퀴 모델을 활용한 사용자 리뷰 감정 분석)

  • Yu Rim Park;Hyon Hee Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1204-1205
    • /
    • 2023
  • 본 논문은 소비자의 리뷰 데이터를 기반으로 한 새로운 감성 분석 방법을 제안한다. 긍정, 부정, 중립으로 분류하는 전통적 감성 분석방법은 텍스트에 나타난 감정의 섬세한 차이를 파악하기 어렵다. 이에 본 연구에서는 GPT 모델을 사용하여 텍스트에서 사용자의 감정을 8 가지의 카테고리로 세분화한다. 부정적 정서를 가진 리뷰에서 분노, 혐오, 실망과 같은 구체적인 감정들을 직관적으로 파악할 수 있었고, 감정의 강도까지 파악할 수 있었다. 제안된 방법을 통해 기업은 고객의 요구 사항을 정확하게 인지할 수 있으며, 고객 맞춤형 서비스 개선에 기여할 수 있다는 점이 기대된다.

On the Predictive Model for Emotion Intensity Improving the Efficacy of Emotionally Supportive Chat (챗봇의 효과적 정서적 지지를 위한 한국어 대화 감정 강도 예측 모델 개발)

  • Sae-Lim Jeong;You-Jin Roh;Eun-Seok Oh;A-Yeon Kim;Hye-Jin Hong;Jee Hang Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.656-659
    • /
    • 2023
  • 정서적 지원 대화를 위한 챗봇 개발 시, 사용자의 챗봇에 대한 사용성 및 대화 적절성을 높이기 위해서는 사용자 감정에 적합한 지원 콘텐츠를 제공하는 것이 중요하다. 이를 위해, 본 논문은 사용자 입력 텍스트의 감정 강도 예측 모델을 제안하고, 사용자 발화 맞춤형 정서적 지원 대화에 적용하고자 한다. 먼저 입력된 한국어 문장에서 키워드를 추출한 뒤, 이를 각성도 (arousal)과 긍정부 정도(valence) 공간에 투영하여 키워드가 내포하는 각성도-긍정부정도에 가장 근접한 감정을 예측하였다. 뿐만 아니라, 입력된 전체 문장에 대한 감정 강도를 추가로 예측하여, 핵심 감정 강도 - 문맥상 감정강도를 모두 추출하였다. 이러한 통섭적 감정 강도 지수들은 사용자 감정에 따른 최적 지원 전략 선택 및 최적 대화 콘텐츠 생성에 공헌할 것으로 기대한다.

Study on a Robot System based on Emotion Model for Home Entertainment (감정 모델 기반의 홈 엔터테인먼트용 로봇 시스템에 관한 연구)

  • Baek, Sang-Joon;Bae, Sung-Ho;Oh, Sei-Woong;Jun, Sung-Taeg
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.80-83
    • /
    • 2006
  • Nowadays, the more complicated the society become, the more spreaded individualism is. Moreover, since a number of old people living alone are increasing, human friendly robots for home entertainments are required. Conventional home robots having same behavior for a user's order can't give us funny. In this paper, a robot system based on emotion model for home entertainments is proposed. The proposed system has various behavior for a same order depending on the emotional state such as happy, angry, lovely and joyful grades.

  • PDF

Social Network Based Music Recommendation System (소셜네트워크 기반 음악 추천시스템)

  • Park, Taesoo;Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.133-141
    • /
    • 2015
  • Mass multimedia contents are shared through various social media servies including social network service. As social network reveals user's current situation and interest, highly satisfactory personalized recommendation can be made when such features are applied to the recommendation system. In addition, classifying the music by emotion and using analyzed information about user's recent emotion or current situation by analyzing user's social network, it will be useful upon recommending music to the user. In this paper, we propose a music recommendation method that makes an emotion model to classify the music, classifies the music according to the emotion model, and extracts user's current emotional state represented on the social network to recommend music, and evaluates the validity of our method through experiments.

User's Emotion Modeling on Dynamic Narrative Structure : towards of Film and Game (동적 내러티브 구조에 대한 사용자 감정모델링 : 영화와 게임을 중심으로)

  • Kim, Mi-Jin;Kim, Jae-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.103-111
    • /
    • 2012
  • This paper is a basic study for making a system that can predict the success and failure of entertainment contents at the initial stage of production. It proposes the user's emotion modeling of dynamic narrative on entertainment contents. To make this possible, 1) dynamic narrative emotion model is proposed based on theoretical research of narrative structure and cognitive emotion model. 2) configuring the emotion types and emotion value, proposed model of three emotion parameter(desire, expectation, emotion type) are derived. 3)To measure user's emotion in each story event of dynamic narrative, cognitive behavior and description of user(film, game) is established. The earlier studies on the user research of conceptual, analytic approach is aimed of predicting on review of the media and user's attitude, and consequently these results is delineated purely descriptive. In contrast, this paper is proposed the method of user's emotion modeling on dynamic narrative. It would be able to contributed to the emotional evaluation of entertainment contents using specific information.

Dynamic Facial Expression of Fuzzy Modeling Using Probability of Emotion (감정확률을 이용한 동적 얼굴표정의 퍼지 모델링)

  • Kang, Hyo-Seok;Baek, Jae-Ho;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • This paper suggests to apply mirror-reflected method based 2D emotion recognition database to 3D application. Also, it makes facial expression of fuzzy modeling using probability of emotion. Suggested facial expression function applies fuzzy theory to 3 basic movement for facial expressions. This method applies 3D application to feature vector for emotion recognition from 2D application using mirror-reflected multi-image. Thus, we can have model based on fuzzy nonlinear facial expression of a 2D model for a real model. We use average values about probability of 6 basic expressions such as happy, sad, disgust, angry, surprise and fear. Furthermore, dynimic facial expressions are made via fuzzy modelling. This paper compares and analyzes feature vectors of real model with 3D human-like avatar.

Visualizing Emotions with an Artificial Emotion Model Based on Psychology -Focused on Characters in Hamlet- (심리학 기반 인공감정모델을 이용한 감정의 시각화 -햄릿의 등장인물을 중심으로-)

  • Ham, Jun-Seok;Ryeo, Ji-Hye;Ko, Il-Ju
    • Science of Emotion and Sensibility
    • /
    • v.11 no.4
    • /
    • pp.541-552
    • /
    • 2008
  • We cannot express emotions correctly with only speech because it is hard to estimate the kind, size, amount of emotions. Hamlet who is a protagonist in 'Hamlet' of Shakespeare has emotions which cannot be expressed within only speech because he is in various dramatic situations. So we supposed an artificial emotion, instead of expressing emotion with speech, expressing and visualizing current emotions with color and location. And we visualized emotions of characters in 'Hamlet' with the artificial emotion. We designed the artificial emotion to four steps considering peculiarities of emotion. First, the artificial emotion analyzes inputted emotional stimulus as relationship between causes and effects and analyzes its kinds and amounts. Second, we suppose Emotion Graph Unit to express generating, maintaining, decaying of analyzed one emotional stimuli which is outputted by first step, according to characteristic. Third, using Emotion Graph Unit, we suppose Emotion Graph that expresses continual same emotional stimulus. And we make Emotion Graph at each emotions, managing generation and decay of emotion individually. Last, we suppose Emotion Field can express current combined value of Emotion Graph according to co-relation of various emotions, and visualize current emotion by a color and a location in Emotion Field. We adjusted the artificial emotion to the play 'Hamlet' to test and visualize changes of emotion of Hamlet and his mother, Gertrude.

  • PDF

Emotion Recognition using Speech Recognition Information (음성 인식 정보를 사용한 감정 인식)

  • Kim, Won-Gu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.425-428
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

  • PDF

Emotion-Based Dynamic Crowd Simulation (인간의 감정에 기반한 동적 군중 시뮬레이션)

  • Moon Chan-Il;Han Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.87-93
    • /
    • 2004
  • In this paper we present a hybrid model that enables dynamic regrouping based on emotion in determining the behavioral pattern of crowds in order to enhance the reality of crowd simulation in virtual environments such as games. Emotion determination rules are defined and they are used for dynamic human regrouping to simulate the movement of characters through crowds realistically. Our experiments show more natural simulation of crowd behaviors as results of this research.

  • PDF