• 제목/요약/키워드: 감정 모델

검색결과 497건 처리시간 0.025초

감정 분석에서의 심리 모델 적용 비교 연구 (A Comparative Study on Sentiment Analysis Based on Psychological Model)

  • 김해준;도준호;선주오;정서희;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.450-452
    • /
    • 2020
  • 기술의 발전과 함께 사용자에게 가까이 자리 잡은 소셜 네트워크 서비스는 이미지, 동영상, 텍스트 등 활용 가능한 데이터의 수를 폭발적으로 증가시켰다. 작성자의 감정을 포함하고 있는 텍스트 데이터는 시장 조사, 주가 예측 등 다양한 분야에서 이용할 수 있으며, 이로 인해 긍부정의 이진 분류가 아닌 다중 감정 분석의 필요성 또한 높아지고 있다. 본 논문에서는 딥러닝 기반 감정 분류에 심리학 이론의 기반 감정 모델을 활용한 결합 모델과 단일 모델을 비교한다. 학습을 위해 AI Hub에서 제공하는 데이터와 노래 가사 데이터를 복합적으로 사용하였으며, 결과에서는 대부분의 경우에 결합 모델이 높은 결과를 보였다.

  • PDF

감정확률을 이용한 동적 얼굴표정의 퍼지 모델링 (Dynamic Facial Expression of Fuzzy Modeling Using Probability of Emotion)

  • 강효석;백재호;김은태;박민용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.401-404
    • /
    • 2007
  • 본 논문은 거울 투영을 이용하여 2D의 감정인식 데이터베이스를 3D에 적용 가능하다는 것을 증명한다. 또한, 감정 확률을 이용하여 퍼지 모델링을 기반으로한 얼굴표정을 생성하고, 표정을 움직이는 3가지 기본 움직임에 대한 퍼지이론을 적용하여 얼굴표현함수를 제안한다. 제안된 방법은 거울 투영을 통한 다중 이미지를 이용하여 2D에서 사용되는 감정인식에 대한 특징벡터를 3D에 적용한다. 이로 인해, 2D의 모델링 대상이 되는 실제 모델의 기본감정에 대한 비선형적인 얼굴표정을 퍼지를 기반으로 모델링한다. 그리고 얼굴표정을 표현하는데 기본 감정 6가지인 행복, 슬픔, 혐오, 화남, 놀람, 무서움으로 표현되며 기본 감정의 확률에 대해서 각 감정의 평균값을 사용하고, 6가지 감정 확률을 이용하여 동적 얼굴표정을 생성한다. 제안된 방법을 3D 인간형 아바타에 적용하여 실제 모델의 표정 벡터와 비교 분석한다.

  • PDF

러셀 모델의 확장을 통한 감정차원 모델링 방법 연구 (A Novel Method for Modeling Emotional Dimensions using Expansion of Russell's Model)

  • 한의환;차형태
    • 감성과학
    • /
    • 제20권1호
    • /
    • pp.75-82
    • /
    • 2017
  • 본 논문에서는 Russell (1980)의 감정차원 모델(Circumplex Model)을 확장하여 새로운 감정차원 모델링 방식을 제안한다. 기존의 감정차원 중 가장 대표적인 Russell의 모델은 각성(Arousal), 정서가(Valence)의 2개의 축을 이용하여 감정을 나타낸다. 하지만 기존의 연구에서는 Russell의 감정차원은 감정을 하나의 점으로만 표현하기 때문에 정확한 위치라고 할 수 없으며 감성과학, HCI, Ergonomics 등의 공학 분야에서 사용하기 어렵다고 주장하였다. 따라서 본 논문에서는 Russell의 감정차원 위에 감정들을 하나의 점으로 표현하지 않고, 데이터 분포를 가정하여 영역으로 표현하는 방법을 제안한다. 실제 설문을 진행하여 자료를 수집하였고, 타원의 방정식을 이용하여 영역을 수식화하였다. 또한, 마지막 장에서 실제 많은 연구에서 사용되는 ANEW와 IAPS 데이터를 패턴인식 알고리즘을 통해 본 논문에서 제안한 모델에 적용해 보았다. 본 논문에서는 새로운 모델링 방법을 통해 기존의 연구자들에게 지적된 Russell 모델의 문제점을 보완하고, 이 모델을 공학 분야에서도 쉽게 적용할 수 있었다.

비디오 셧의 감정 관련 특징에 대한 통계적 모델링 (Statistical Model for Emotional Video Shot Characterization)

  • 박현재;강행봉
    • 한국통신학회논문지
    • /
    • 제28권12C호
    • /
    • pp.1200-1208
    • /
    • 2003
  • 비디오 데이터에 존재하는 감정을 처리하는 것은 지능적인 인간과 컴퓨터와의 상호작용을 위해서 매우 중요한 일이다. 이러한 감정을 추출하기 위해서는 비디오로부터 감정에 관련된 특징들을 검출하기 위한 컴퓨팅 모델을 구축하는 것이 바람직하다. 본 논문에서는 비디오 셧에 존재하는 저급 특징들의 확률적인 분포를 이용하여 감정 이벤트 발생에 관련된 통계학적인 모델을 제안한다. 즉, 비디오 셧의 기본적인 특징을 추출하고 그 특징을 통계적으로 모델화 하여 감정을 유발하는 셧을 찾아낸다. 비디오 셧의 특징으로는 칼라, 카메라 모션 및 셧 길이의 변화를 이용한다. 이러한 특징들을 EM(Expectation Maximization) 알고리즘을 이용하여 GMM(Gaussian Mixture Model) 으로 모델링하고, 감정과 시간과의 관계를 MLE(Maximum Likelihood Estimation)를 이용하여 시간에 따른 확률분포 모델로 구성한다. 이런 두 개의 통계적인 모델들을 융합하여 베이시안 분류법을 적용하여 비디오 데이터로부터 감정에 관련된 셧을 찾아낸다.

복합적 감정(mixed feelings)에 대한 감정차원 연구 (English Title - A Study of Emotional Dimension for Mixed Feelings)

  • 한의환;차형태
    • 감성과학
    • /
    • 제16권4호
    • /
    • pp.469-480
    • /
    • 2013
  • 본 논문에서는 기존에 Russell의 감정차원 모델(A Circumplex model)상에서 데이터의 분산 값을 줄이고, 복합적감정(mixed feelings)을 표현하는 새로운 방법을 제안한다. Russell의 감정차원 모델은 감정을 뜻하는 단어(기쁨, 슬픔, 행복, 신남 등)를 제시한 뒤, 자가진단방식(SAM)을 이용하여 단어들의 평균과 분산을 구하고, 각 단어들을 PAD차원(Pleasure, Arousal, Dominance)에 하나의 점으로 표시한다. 하지만 다른 연구자에 의하여 Russell모델의 문제점으로 각 단어들의 분산 값이 커서 데이터의 신뢰도나 정확성이 떨어지며, Russell의 모델의 구조에선 복합적 감정(mixed feelings)을 표현할 수 없는 등의 문제점들이 지속적으로 제기되었다. 본 논문에서는 이와 같은 문제점을 보완하기 위해 설문 방식의 변화를 통해서 실험을 진행하여, 데이터의 분산 값을 줄일 수 있었다. 또한 복합적 감정을 유발 할 수 있는 실험을 통해 감정 상태의 긍정적/부정적인 부분의 관계를 확인해보고, Russell모델에서도 복합적 감정을 표현할 수 있음을 입증하였다. 본 논문에서 제안하는 방법을 이용하여 기존의 연구에서 보다 신뢰도와 정확도가 높은 데이터를 얻을 수 있으며, Russell모델을 적용시키기 어려웠던 생체신호, 복합적 감정, 실감 방송 등의 여러 분야에 적용 시킬 수 있다.

KE-T5 기반 한국어 대화 문장 감정 분류 (KE-T5-Based Text Emotion Classification in Korean Conversations)

  • 임영범;김산;장진예;신사임;정민영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.496-497
    • /
    • 2021
  • 감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.

  • PDF

사용자 행동 자세를 이용한 시각계 기반의 감정 인식 연구 (A Study on Visual Perception based Emotion Recognition using Body-Activity Posture)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제18B권5호
    • /
    • pp.305-314
    • /
    • 2011
  • 사람의 의도를 인지하기 위해 감정을 시각적으로 인식하는 연구는 전통적으로 감정을 드러내는 얼굴 표정을 인식하는 데 집중해 왔다. 최근에는 감정을 드러내는 신체 언어 즉 신체 행동과 자세를 통해 감정을 나타내는 방법에서 감정 인식의 새로운 가능성을 찾고 있다. 본 연구는 신경생리학의 시각계 처리 방법을 적용한 신경모델을 구축하여 행동에서 기본 감정 의도를 인식하는 방법을 제안한다. 이를 위해 시각 피질의 정보 처리 모델에 따라 생물학적 체계의 신경모델 검출기를 구축하여 신체 행동의 정적 자세에서 6가지 주요 기본 감정을 판별한다. 파라미터 변화에 강건한 제안 모델의 성능은 신체행동 자세 집합을 대상으로 사람 관측자와의 평가 결과를 비교 평가하여 가능성을 제시한다.

상담 챗봇의 다차원 감정 인식 모델 (Multi-Dimensional Emotion Recognition Model of Counseling Chatbot)

  • 임명진;이명호;신주현
    • 스마트미디어저널
    • /
    • 제10권4호
    • /
    • pp.21-27
    • /
    • 2021
  • 최근 COVID-19로 인한 코로나 블루로 상담의 중요성이 높아지고 있다. 또한 비대면 서비스의 증가로 상담 매체에 변화를 준 챗봇에 관한 연구들이 활발하게 진행되고 있다. 챗봇을 통한 비대면 상담에서는 내담자의 감정을 정확하게 파악하는 것이 가장 중요하다. 하지만 내담자가 작성한 문장만으로 감정을 인식하는 데는 한계가 있으므로 더 정확한 감정 인식을 위해서는 문장에 내제되어있는 차원 감정을 인식하는 것이 필요하다. 따라서 본 논문에서는 상담 챗봇의 감정 인식 개선을 위해 원본 데이터를 데이터의 특성에 맞게 보정한 후 Word2Vec 모델을 학습하여 생성된 벡터와 문장 VAD(Valence, Arousal, Dominance)를 딥러닝 알고리즘으로 학습한 다차원 감정 인식 모델을 제안한다. 제안한 모델의 유용성 검증 방법으로 3가지 딥러닝 모델을 비교 실험한 결과로 Attention 모델을 사용했을 때 R-squared가 0.8484로 가장 좋은 성능을 보인다.

감정변화가 행동에 미치는 영향을 고려한 모델 (The Model Considered with the Effect of Emotion Change)

  • 김병관;김성주;조현찬;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.69-72
    • /
    • 2003
  • 사람은 이성과 감정을 가지고 있어, 동일한 환경 조건하에서도 감정에 따라 조금은 다른 행동을 보인다. 그러므로 아무리 정교한 행동을 할 수 있는 에이전트를 만든다 하더라고 로봇이 자체의 내부 감정을 동반하지 않으면, 능동적으로 상호 작용을 할 수 있는 에이전트를 구성할 수 없다 볼 수 있다. 본 논문에서는 감독학습, SOM(self-organizing Map) 그리고 fuzzy controller를 통해서, 주어진 환경에서 학습된 행동을 함에 있어서 감정의 변화를 고려해, 감정의 요소가 행동에 영향을 미치는 에이전트를 모델링하고자 한다. 또한 감정을 가진 모델을 통해 최종적으로 사람과 상호행동하는 모델에 대한 가능성을 제시하고자 한다.

  • PDF

인공 감정 모델의 설계 (Design of an Artificial Emotion Model)

  • 이인근;서석태;정혜천;권순학
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.648-653
    • /
    • 2007
  • 인간의 감정을 모방하여 다양한 외부 자극에 대해 인위적으로 감정을 생성하는 인공 감정에 관한 연구가 최근에 시작되어 이루어지고 있다. 그러나 기존의 인공 감정 연구에서는 외부 감정 자극에 대한 감정 상태를 선형적, 지수적으로 변화시킴으로써 감정 상태가 급격하게 변하는 단점을 갖고 있다. 본 논문에서는 외부 감정 자극의 강도와 빈도뿐만 아니라 자극의 반복 주기를 감정 상태에 반영하고, 시간에 따른 감정의 변화를 시그모이드 곡선 형태로 표현하는 인공 감정 생성 모델을 제안한다. 그리고 기존의 감정 자극에 대한 회상을 통해 외부 감정 자극이 없는 상황에서도 감정을 생성할 수 있는 인공감정 시스템을 제안하고 컴퓨터 모의실험 결과를 통해 그 효용성을 보인다.