• Title/Summary/Keyword: 감정 마이닝

Search Result 85, Processing Time 0.028 seconds

A Child Emotion Analysis System using Text Mining and Method for Constructing a Children's Emotion Dictionary (텍스트마이닝 기반 아동 감정 분석 시스템 및 아동용 감정 사전 구축 방안)

  • Young-Jun Park;Sun-Young Kim;Yo-Han Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.545-550
    • /
    • 2024
  • In a society undergoing rapid change, modern individuals are facing various stresses, and there's a noticeable increase in mental health treatments for children as well. For the psychological well-being of children, it's crucial to swiftly discern their emotional states. However, this proves challenging as young children often articulate their emotions using limited vocabulary. This paper aims to categorize children's psychological states into four emotions: depression, anxiety, loneliness, and aggression. We propose a method for constructing an emotion dictionary tailored for children based on assessments from child psychology experts.

Research Trends on Emotional Labor in Korea using text mining (텍스트마이닝을 활용한 감정노동 연구 동향 분석)

  • Cho, Kyoung-Won;Han, Na-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.6
    • /
    • pp.119-133
    • /
    • 2021
  • Research has been conducted in many fields to identify research trends using text mining, but in the field of emotional labor, no research has been conducted using text mining to identify research trends. This study uses text mining to deeply analyze 1,465 papers at the Korea Citation Index (KCI) from 2004 to 2019 containing the subject word 'emotional labor' to understand the trend of emotional labor researches. Topics were extracted by LDA analysis, and IDM analysis was performed to confirm the proportion and similarity of the topics. Through these methods, an integrated analysis of topics was conducted considering the usefulness of topics with high similarity. The research topics are divided into 11 categories in descending order: stress of emotional labor (12.2%), emotional labor and social support (12.0%), customer service workers' emotional labor (10.9%), emotional labor and resilience (10.2%), emotional labor strategy (9.2%), call center counselor's emotional labor (9.1%), results of emotional labor (9.0%), emotional labor and job exhaustion (7.9%), emotional intelligence (7.1%), preliminary care service workers' emotional labor (6.6%), emotional labor and organizational culture (5.9%). Through topic modeling and trend analysis, the research trend of emotional labor and the academic progress are analyzed to present the direction of emotional labor research, and it is expected that a practical strategy for emotional labor can be established.

Sentiment words extraction method using pattern (패턴을 이용한 상품평 감정 단어 추출 방법)

  • Chun, Eun-Hye;Shim, Su-Jeong;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.112-113
    • /
    • 2010
  • 최근 오피니언 마이닝 관련 연구 중 감정 분류에 대한 관심이 높아지면서 많은 연구가 진행되고 있다. 기존 영어권 연구에서 제시되어온 방법은 한국어 상품평에 적용하는 것이 쉽지 않다. 영어 시소러스 기반 한국어 감정단어 추출 기술은 한국어와 영어 단어가 일대일로 일치하기가 어렵다는 문제가 있다. 기존 관련 연구 중 k-Structure 기법은 패턴의 길이가 3인 단순한 문장에 속성단어와 감정단어가 포함되었을 경우를 기준으로 한 것이므로 한정적이다. 본 논문에서 제안하는 방법은 상품평에서 의미적인 패턴을 추출하여 감정 단어의 위치를 파악하는 방법이다.

  • PDF

Automatic Construction of a Negative/positive Corpus and Emotional Classification using the Internet Emotional Sign (인터넷 감정기호를 이용한 긍정/부정 말뭉치 구축 및 감정분류 자동화)

  • Jang, Kyoungae;Park, Sanghyun;Kim, Woo-Je
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.512-521
    • /
    • 2015
  • Internet users purchase goods on the Internet and express their positive or negative emotions of the goods in product reviews. Analysis of the product reviews become critical data to both potential consumers and to the decision making of enterprises. Therefore, the importance of opinion mining techniques which derive opinions by analyzing meaningful data from large numbers of Internet reviews. Existing studies were mostly based on comments written in English, yet analysis in Korean has not actively been done. Unlike English, Korean has characteristics of complex adjectives and suffixes. Existing studies did not consider the characteristics of the Internet language. This study proposes an emotional classification method which increases the accuracy of emotional classification by analyzing the characteristics of the Internet language connoting feelings. We can classify positive and negative comments about products automatically using the Internet emoticon. Also we can check the validity of the proposed algorithm through the result of high precision, recall and coverage for the evaluation of this method.

The Design of Keyword Analysis System using a Opinion Mining Scheme (오피니언 마이닝 기법을 이용한 키워드 분석 시스템 설계)

  • Moon, Hee Jun;Kim, Dong Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.141-142
    • /
    • 2022
  • 최근 빅데이터를 통해 여러 가지 분석을 진행하고 있다. 다만 이러한 방식으로는 키워드에 대해 여론에 대한 분석을 거치지 않아 정확한 분석이 힘들다는 문제점을 가지고 있다. 따라서 본 논문에서는 이러한 문제점의 개선을 위해 데이터를 수집하고 이에 대해 감정분석을 수행하는 컨테이너 기반의 시스템을 제안한다. 감정분석 시스템을 적용한다면 키워드에 대해 분석 시에 정확도가 더욱 높아질 것으로 전망된다.

  • PDF

Sensitivity Identification Method for New Words of Social Media based on Naive Bayes Classification (나이브 베이즈 기반 소셜 미디어 상의 신조어 감성 판별 기법)

  • Kim, Jeong In;Park, Sang Jin;Kim, Hyoung Ju;Choi, Jun Ho;Kim, Han Il;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • From PC communication to the development of the internet, a new term has been coined on the social media, and the social media culture has been formed due to the spread of smart phones, and the newly coined word is becoming a culture. With the advent of social networking sites and smart phones serving as a bridge, the number of data has increased in real time. The use of new words can have many advantages, including the use of short sentences to solve the problems of various letter-limited messengers and reduce data. However, new words do not have a dictionary meaning and there are limitations and degradation of algorithms such as data mining. Therefore, in this paper, the opinion of the document is confirmed by collecting data through web crawling and extracting new words contained within the text data and establishing an emotional classification. The progress of the experiment is divided into three categories. First, a word collected by collecting a new word on the social media is subjected to learned of affirmative and negative. Next, to derive and verify emotional values using standard documents, TF-IDF is used to score noun sensibilities to enter the emotional values of the data. As with the new words, the classified emotional values are applied to verify that the emotions are classified in standard language documents. Finally, a combination of the newly coined words and standard emotional values is used to perform a comparative analysis of the technology of the instrument.

Automatic Classification of Korean Movie Reviews Using a Word Pattern Frequency (단어 패턴 빈도를 이용한 한국어 영화평 자동 분류기법)

  • Chang, Jae-Young;Kim, Jung-Min;Lee, Sin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.51-53
    • /
    • 2012
  • 데이터 마이닝의 문서분류 기술에서 발전된 오피니언 마이닝은 이제 국외뿐만 아니라 국내의 학계 및 기업에서 중요한 관심분야로 자리잡아가고 있다. 오피니언 마이닝의 핵심은 문서에서 감정 단어를 추출하여 긍정/부정 여부를 얼마나 정확하게 자동적으로 판별하느냐를 평가하는 것이다. 국내에서도 이에 관련된 많은 연구가 이루어 졌으나 아직 실용적으로 적용할 만큼의 정확한 분류 정확도 보이지 않고 있다. 그 이유는 한국어의 경우 비문법적 표현, 감정단어의 다양성 등으로 인해 문서의 극성을 판별하기가 쉽지 않기 때문이다. 본 논문에서는 문법적 요소를 최대한 배제하고 단어 패턴의 빈도만을 고려한 영화평 분류기법을 제안한다. 제안된 방법에서는 문서를 단어들의 리스트로 추상화하여 패턴들의 빈도로 학습한 후 적절한 스코어 함수를 적용하여 문서의 극성을 판별한다. 또한 실험을 통해 제안된 기법의 정확도를 평가한다.

Social Roles of Child Sexual Crime Faction Films: Text Mining Analysis of Audiences' Emotional Reactions (아동·청소년 대상 성범죄 팩션영화의 사회적 역할 탐색: 텍스트 마이닝 기법을 활용한 수용자 감정반응 분석)

  • Kim, Ho-Kyung;Kwon, Ki-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.662-672
    • /
    • 2017
  • Child sexual crimes have increased, but there has been no effective plan to combat this. Films reporting problems, amplify the attentions and propose countermeasures, which leads to changes. The current study examined the audiences' reactions to child sexual crime faction films using text-mining. The analysis of Naver's 2,727 blogs showed realistic words while 3,000 review comments' analysis demonstrated emotional responses. The positive and negative emotional category and degree were also different. In , the higher degree of negative emotions, such as 'angry' and 'unpleasant' appeared frequently. In , only negative emotional worlds were used. On the other hand, 'sad' was the highest ranked word, and the negative level was weak. In , 'good' a positive emotional word solely emerged. The audiences perceived the accidents objectively before release while they expressed their emotions and feelings after watching the movies. caused explosive anger and organized the participating citizens for changes. This movie provided an opportunity to enforce a legislative bill intensifying heavy punishments. The present study is significant in scrutinizing the audiences' diverse emotional reactions and discusses the future direction of society prosecution movies. Based on the text analysis of the audiences' linguistic expressions, a future study will be needed to hierarchically classify the diverse emotional expressions.

Annotation Guidelines for Korean Sentiment Analysis and Annotation Tool (한국어 감정분석을 위한 말뭉치 구축 가이드라인 및 말뭉치 구축 도구)

  • Ha, Eun-Ju;Oh, Jin-Young;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.84-87
    • /
    • 2018
  • 한국어 감정분석에 대한 연구는 활발하게 진행되고 있다. 그렇지만 학습 및 평가 말뭉치 표현에 대한 논의가 부족하다. 본 논문은 한국어 감정분석에 대해 정의하고, 말뭉치 제작을 위한 가이드라인을 제시한다. 또한, 태깅 가이드라인에 따라 말뭉치를 구축하였으며 한국어 감정분석을 위한 반자동 태깅 도구를 구현하였다.

  • PDF

Query-based User Emotion Prediction (질의 기반 사용자 감정상태 예측)

  • Min, Hye-Jin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.211-214
    • /
    • 2014
  • 본 연구에서는 질의를 기반으로 사용자의 감정상태를 예측하는 방법을 제안한다. 제안방법은 자극-감정 규칙베이스 구축, 규칙확률 값 기반 질의 랭킹, 질의 랭킹 기반 사용자 감정예측의 단계로 구성된다. 방법의 적절성을 검증하기 위하여 힘들다와 심심하다에 대한 결과로 사용자평가를 실시하였다. 힘들다의 결과에서는 힘들다 정도에 대한 점수가 높은 질의들을 지속적으로 검색하는 사용자들을 힘들다라고 판단할 수 있다고 분석되었다. 심심하다의 결과에서는 방법 간 유의미한 차이를 보이지 않았으나, 특정 개별질의의 지속적인 패턴을 분석하는 것이 좀 더 높은 점수를 얻은 것으로 평가되었다.

  • PDF