• Title/Summary/Keyword: 가중 연관 규칙 탐사

Search Result 2, Processing Time 0.017 seconds

Weighted Association Rule Discovery for Item Groups with Different Properties (상이한 특성을 갖는 아이템 그룹에 대한 가중 연관 규칙 탐사)

  • 김정자;정희택
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1284-1290
    • /
    • 2004
  • In market-basket analysis, weighted association rule(WAR) discovery can mine the rules which include more beneficial information by reflecting item importance for special products. However, when items are divided into more than one group and item importance for each group must be measured by different measurement or separately, we cannot directly apply traditional weighted association rule discovery. To solve this problem, we propose a novel methodology to discovery the weighted association rule in this paper In this methodology, the items should be first divided into sub-groups according to the properties of the items, and the item importance is defined or calculated only with the items enclosed to the sub-group. Our algorithm makes qualitative evaluation for network risk assessment possible by generating risk rule set for risk factor using network sorority data, and quantitative evaluation possible by calculating risk value using statistical factors such as weight applied in rule generation. And, It can be widely used for new model of more delicate analysis in market-basket database in which the data items are distinctly separated.

Analysis on Relation between Rehabilitation Training Movement and Muscle Activation using Weighted Association Rule Discovery (가중연관규칙 탐사를 이용한 재활훈련운동과 근육 활성의 연관성 분석)

  • Lee, Ah-Reum;Piao, Youn-Jun;Kwon, Tae-Kyu;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.7-17
    • /
    • 2009
  • The precise analysis of exercise data for designing an effective rehabilitation system is very important as a feedback for planing the next exercising step. Many subjective and reliable research outcomes that were obtained by analysis and evaluation for the human motor ability by various methods of biomechanical experiments have been introduced. Most of them include quantitative analysis based on basic statistical methods, which are not practical enough for application to real clinical problems. In this situation, data mining technology can be a promising approach for clinical decision support system by discovering meaningful hidden rules and patterns from large volume of data obtained from the problem domain. In this research, in order to find relational rules between posture training type and muscle activation pattern, we investigated an application of the WAR(Weishted Association Rule) to the biomechanical data obtained mainly for evaluation of postural control ability. The discovered rules can be used as a quantitative prior knowledge for expert's decision making for rehabilitation plan. The discovered rules can be used as a more qualitative and useful priori knowledge for the rehabilitation and clinical expert's decision-making, and as a index for planning an optimal rehabilitation exercise model for a patient.