Communications for Statistical Applications and Methods
/
v.4
no.1
/
pp.91-99
/
1997
본 연구에서는 신경망이론을 이용하여 시계열자료를 분석할 때 문제가 되고 있는 초기 가중값을 선정하는 방법을 제시하고자 한다. 기존의 연구에서 학습을 위한 초기 가중값의 결정은 난수에 의존하고 있다. 본 연구에서는 신경망학습의 효율적인 초기값을 선택하기 위하여 제어상자를 이용한다. 그리고 학습과정에서 가중값의 변화를 추적하고 적절한 가중값의 범위를 탐색하면서 새로운 초기값을 제어상자를 통하여 실시간으로 재설정하는 방법을 제시한다.
Sample attrition according to a long-term tracking reduces the representativeness of the sample data in a panel study. Most panel surveys in South Korea and other countries have prepared response adjustment weights in order to solve problems regarding representativeness due to sample attrition. In this paper, we divided the panel data into continuous response group and non-continuous response group according to response patterns and considered a weighting adjustment method to reduce the bias of the non-continuous response group. A simulation indicated that the proposed composite estimation type weighting method, which reflected the characteristics of non-continuous response groups, could be more efficient than other weighting methods in terms of reducing non-response bias. As a case study, the proposed methods are applied to the Korean Longitudinal Study of Ageing (KLoSA) data of the Korea Employment Information Service.
This paper proposes a weighted fuzzy reasoning algorithm for rule-based systems based on weighted fuzzy Pr/T nets, where the certainty factors of the fuzzy production rules, the truth values of the predicates appearing in the rules and the weights representing the importance of the predicates are represented by the fuzzy numbers. The proposed algorithm is more flexible and much closer to human intuition and reasoning than other methods : $\circled1$ calculate the certainty factors using by the simple min and max operations based on the only certainty factors of the fuzzy production rules without the weights of the predicates[10] : $\circled2$ evaluate the belief of the fuzzy production rules using by the belief evaluation functions according to fuzzy concepts in the fuzzy rules without the weights of the predicates[12], because this algorithm uses the weights representing the importance of the predicates in the fuzzy production rules.
본 논문에서는 오차 역전파 알고리즘의 전역 최소값을 찾지 못하는 문제점에 대해서 설명하였고, 이 문제를 해결하기 위한 방법으로 유전자 알고리즘에 대해서 설명하였다. 오차 역전파 알고리즘은 기본적으로 경도 하강법을 따른다. 따라서 신경망의 각 가중값 행렬이 만드는 고차의 오차 평면이 대부분의 문제에서 다수의 국부 최소값들을 가지는게 일반적인데, 가중값의 변화가 한방으로 진행하기 시작하여, 오차가 증가되어지는 언덕이 학습 계수보다 크다면 더 이상 학습은 진행되지 않고 거기에서 빠져나가지 못한다. 따라서 초기의 위치가 중요한 역할을 하는데, 이 문제를 해결하기 위해서 유전자 알고리즘을 이용한 신경망 초기화 방법을 제안하였다. 끝으로, 간단한 실험으로 제안된 방법을 구현하고 결과에 대해서 논하였다
We propose a modified learning process for generalized neural network using a learning algorithm by Liu et al. (2001). We consider the effect of initial weights, training results and learning errors using a modified learning process. We employ an incremental training procedure where training patterns are learned systematically. Our algorithm starts with a single training pattern and a single hidden layer neuron. During the course of neural network training, we try to escape from the local minimum by using a weight scaling technique. We allow the network to grow by adding a hidden layer neuron only after several consecutive failed attempts to escape from a local minimum. Our optimization procedure tends to make the network reach the error tolerance with no or little training after the addition of a hidden layer neuron. Simulation results with suitable initial weights indicate that the present constructive algorithm can obtain neural networks very close to minimal structures and that convergence to a solution in neural network training can be guaranteed. We tested these algorithms extensively with small training sets.
In general, the reliabilities of the fuzzy system are represented and analyzed by real numbers between zero and one, fuzzy numbers, intervals of confidence, interval-valued fuzzy sets, vague sets, etc. This paper addresses the method to analyze the reliability of the fuzzy system for the weighted components with the weights reflected on the importance of weighted components in an system. The reliabilities and the weights of the weighted components in a fuzzy numbers and considers the weights of the weighted components in a fuzzy system, therefore, its execution is faster and more flexible than the conventional methods.
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.493-496
/
2004
본 연구에서는 신경망 학습의 중요한 평가 척도로써 고려될 수 있는 일반화 성능과 학습속도를 개선시키기 위한 방안으로써 초기 가중값과 학습률과 같은 주요 인자들을 이용한 신경망 학습 영향을 살펴본다. 특히 초기 가중값과 학습률을 고정시킨 후 새롭게 조정된 계수들을 점차적으로 변화시키는 새로운 인자 결합방법을 이용하여 신경망 학습량과 학습속도를 비교해 보고 계수조정을 통한 개선된 학습 영향을 살펴본다. 그리고 단순한 예제를 이용한 실증분석을 통하여 신경망 모형의 일반화 성능과 학습 속도 개선을 위한 각 인자들의 개별 효과와 결합 효과를 살펴보고 그 개선 방안을 제시한다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.34
no.3
/
pp.795-804
/
2014
In this study, Andong Reservoir monthly and ten days inflows from July 2011 to September 2011 are predicted using SWAT model and ensemble technique. The weight method using monthly and ten days rainfall forecasts from Korea Meteorological Administration is applied for accurate analysis. If the rainfall prediction announced by Korea Meteorological Administration is close to the actual rainfall, the PDF-Ratio Method shows the best result. If the past high rainfall occurrence is close to the actual rainfall, the modified PDF-Ratio method shows the best result. This method can improve the prediction accuracy even though the Korea Meteorological Administration forecast is not accurate. On the contrary, if Korea Meteorological Administration forecast is different from the actual rainfall and the past rainfall occurrence statistics of lower section, the uniform method shows the best result.
This paper presents a weighted fuzzy backward reasoning algorithm for rule-based systems based on weighted fuzzy Petri nets. The fuzzy production rules in the knowledge base of a rule-based system are modeled by weighted fuzzy Petri nets, where the truth values of the propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by fuzzy numbers. Furthermore, the weights of the propositions appearing in the rules are also represented by fuzzy numbers. The proposed weighted fuzzy backward reasoning generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The algorithm we proposed can allow the rule-based systems to perform weighted fuzzy backward reasoning in more flexible and human-like manner.
In the conventional researches, the reliabilities of the fuzzy system are represented and analyzed by real values between zero and one, fuzzy numbers, intervals of confidence, etc. In this paper, we present a method to represent and analyze the reliabilities of the weighted components of the fuzzy system and the weights reflected on their importance based on vague sets defined in the universe of discourse [0, 1]. The vague set is represented as the interval consisted of the truth-membership functions and the false-membership functions, therefore it can allow the reliabilities and the weights of a fuzzy system to represent in a more flexible manner. The proposed method considers the weights of the weighted components in the fuzzy systems, its reliability analysis is more flexible and effective than the conventional methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.