전력선은 백색 가우시안 배경 잡음뿐 아니라 임펄스 잡음, 고조파 잡음 등의 비 가우시안 잡음들로 인해 통신 채널로서 열악한 전송 특성을 나타낸다. 또한 좁은 가용 대역폭으로 인해, 광대역 특성이 요구되는 DS-CDMA 방식과 같은 대역 확산 시스템의 적용에 한계가 있다. 본 연구에서는 차세대 고속이동통신을 위한 다원접속/변조방식인 멀티코드 (multi-code) CDMA 방식과 이에 길쌈 부호와 인터리빙 등의 부호화 기능을 더한 시스템을 전력선 통신 시스템에 적용하고, 모의실험을 통해 전력선 채널의 비 가우시안 잡음의 영향을 매우 효과적으로 보상할 수 있음을 확인하였다.
본 논문에서는 영상에 첨가된 가우시안 잡음과 임펄스 잡음의 영향을 완화하기 위하여 잡음의 종류에 따라 처리하는 비선형 합성 필터를 제안하였다. 잡음 판단을 통해 국부 마스크의 중심화가 가우시안 잡음으로 판단된 경우, 국부 마스크 내의 표본분산을 이용하여 공간 가중치 필터와 화소 변화에 따른 가중치 필터의 가중치를 다르게 적용하여 처리하고, 임펄스 잡음으로 판단된 경우, 국부 마스크의 잡음 밀도에 따라 국부 히스토그램 가중치 필터와 표준 메디안 필터의 가중치를 다르게 적용하여 처리하는 알고리즘을 제안하였다. 그리고 제안한 필터 알고리즘의 성능을 평가하기 위해 PSNR(peak signal to noise ratio)을 사용하여 기존의 방법들과 제안한 필터 알고리즘을 가우시안 잡음, 임펄스 잡음 및 두 잡음이 혼합된 복합잡음 환경에서 각각 비교하였다.
음성 및 영상신호는 신호를 처리하는 과정에서 다양한 잡음에 의해 훼손되어지며, 이러한 신호를 복원하기 위한 많은 연구가 이루어지고 있다. 본 논문에서는 음성신호와 같은 1차원 신호에 복합적으로 중첩된 가우시안 잡음과 임펄스 잡음을 제거하기 위한 알고리즘을 제안하였다. 알고리즘은 임펄스 잡음을 제거한 후, 가우시안 잡음을 제거 하도록 구성되어져 있으며, 가우시안 잡음을 제거하기 위해 웨이브렛 계수 누적을 이용하였고, 임펄스 잡음을 제거하기 위해 원소 편차에 기반한 중간값 필터를 적용하였다. 그리고 개선 효과의 판단 기준으로 SNR을 사용하였으며, 객관적인 판단을 위해 기존의 방법들과 비교하였다.
본 논문에서는 광대역 특성을 갖는 잡음 환경에서 전파 배경 잡음 측정 시스템의 효과적인 측정을 위한 백색 가우시안 잡음 대역 선정 방법을 제안한다. 산업기기들로부터 발생하는 인공 잡음은 주로 광대역으로 발생하는 임펄스성 잡음으로 현대 잡음 레벨 증가의 주 요소이다. 기존의 특이값 분해에 기반한 방법은 주로 백색 스펙트럼 성질에 기초하여 판별하는 방법으로 광대역 신호에 대하여 그 성능을 효과적으로 내지 못하는 단점이 있다. 제안된 방법은 특이값 분해 기반 방법을 가우시안 특성 기반 방법과 병행함으로써 광대역 환경에서도 백색 가우시안 잡음 대역을 효과적으로 판단할 수 있는 성능을 제공한다. 또한, 가우시안 특성 기반 방법으로써 신호강도 확률 분포 그래프 이용 방법이 갖고 있는 판정의 정확도를 개선하는 모델링을 통한 파라미터 추정 기반 방법을 제시하였다. 제안된 방법의 효율성을 입증하기 위하여 실제 측정 시스템에서 획득한 데이터에 적용하여 제안 방법이 광대역 환경에서 기존의 방법에 비하여 우수함을 보였다.
가우시안 잡음에 의해 훼손된 영상의 복원은 영상처리분야에서 가장 중요한 과제이다. 가우시안 잡음을 제거하기 위해, 가우시안 필터, 평균 필터, 가중치 필터 등 다양한 방법들이 제안되었다. 그러나 기존의 방법들은 잡음제거 및 에지 보존성능이 미흡하다. 따라서 본 논문에서는 효과적으로 잡음을 제거하기 위해, 마스크내의 각 화소들의 공간 거리와 추정된 잡음분산 등을 고려한 적응 가중치 필터를 제안하였다. 그리고 시뮬레이션을 통해 기존의 방법들과 그 성능을 비교하였고, 판단기준으로 MSE(mean squared error)를 사용하였다.
잡음에 강한 음성인식시스템을 위하여 주파수 차감법을 사용할 경우 음성 신호마저 차감하여 신호를 더욱 부식시키는 경우가 존재한다. 본 연구에서는 이러한 경우를 위해서 프레임 마다 추정 잡음과 차감 신호의 SNR(Signal to Noise Ratio) 함수로부터 반연속 HMM(Hidden Markov Model)의 가우시안 함수를 변형 및 결정하는 방법을 제안한다. 이 방법의 타당성을 위해 프레임마다 추정 잡음의 오류 정도가 추정 잡음의 크기와 관계함을 신호 파형 형태로써 보였으며, 이러한 이유에서 SNR을 기준으로 가우시안 함수를 변형 및 결정하게 된다. 실험에서 80㎞/h 이상의 속도로 달리는 차량 내에서 배경 잡음과 음성이 혼합되었을 때의 음성 인식율을 평가하였다. 그 결과 주파수 차감한 경우와 차감하지 않은 경우에 비해 본 논문에서 제안한 SNR에 의한 가우시안 결정 방법이 더욱 향상된 인식율을 보였다.
현대 사회의 정보 통신은 다양한 하드웨어 및 소프트웨어 관련한 디지털 장치가 대중화되고 있으며 디지털 영상은 생산 및 과학연구에 광범위하게 응용되고 있다. 그러나 일반적으로 영상의 전송 및 저장하는 과정에서 잡음이 첨가되어 영상의 질을 저하시킨다. 본 논문에서는 영상에 첨가되는 복합잡음의 영향을 완화하기 위하여 공간영역에서 잡음의 종류에 의해 임펄스 잡음과 가우시안 잡음을 분류하여 처리하며, 임펄스 잡음일 경우, 변형된 비선형 필터 처리하고 가우시안 잡음일 경우, 가중치를 적용시켜 처리하는 알고리즘을 제안하였다. 그리고 PSNR(peak signal to noise ratio)을 사용하여 제안한 알고리즘의 우수성을 판단하였다.
본 논문에서는 기존의 DS-CDMA 시스템의 성능분석을 위해 사용되는 표준 가우시안 근사법과 간단하고 향상된 가우시안 근사법을 이용하여 3세대 이동통신 시스템인 WCDMA(Wideband Code Division Multiple Access) 시스템의 상향링크에 대한 성능을 분석하였다. 수신된 신호의 신호 대 잡음비를 이용하는 표준 가우시안 근사법과, 다중 사용자 간섭 성분에 대한 통계적 특성을 적용하여 표준 가우시안 근사법을 보완한 간단하고 향상된 가우시안 근사법을 사용하여 대역이 제한된 WCDMA 시스템의 성능을 분석하고 백색 가우시안 채널에 다중 사용자 간섭이 존재하는 상황에서 모의실험을 실시하였다. 신호 대 잡음비가 변하는 환경에서 확산 계수와 롤오프 (roll-off) 계수를 변화시켜가면서 당양한 모의실험을 실시하였고, 이를 바탕으로 해서 간단하고 향상된 가우시안 근사법을 사용한 대역제한된 WCDMA 시스템의 성능 분석이 타당함을 확인할 수 있었다.
최근 촬영 기기의 기술발전으로 인해 디지털 영상의 해상도가 증가함에 따라 선명한 디지털 영상에 대한 요구가 증가하고 있다. 이러한 요구에도 불구하고 디지털 영상 내 가우시안 잡음 (gaussian noise)은 촬영기기를 통해 영상 획득 및 처리 과정에서 발생하여 화질을 열화 시킨다. 디지털 이미지에서 발생하는 가우시안 잡음을 제거하기 위해서 기존의 저대역 통과 필터 (low-pass filter: LPF)를 사용하면 잡음은 제거되지만, 블러링 현상 (blurring phenomenon)이 나타난다. 이러한 문제점을 개선하기 위해 소벨 연산자 (sobel operator)를 사용하여 영상 내 에지 맵 (edge-map)을 생성하여 에지 영역과 동질 영역을 구분한다. 에지영역에서는 약한 저역 필터 (weak low-pass filter)를 사용하고, 그 외의 이미지 영역에서는 강한 저역 필터 (strong low-pass filter)를 사용하는 알고리듬을 제안하였다. 그리고 다양한 이미지에 대하여 기존 알고리듬과 제안한 알고리듬의 적용한 결과를 통해 주관적 화질 비교하였고 객관적 지표로 최대 신호 대 잡음비 (peak signal-to noise ratio: PSNR)와 구조 유사성 (structural similarity: SSIM)을 사용하여 성능을 평가하였다. 실험결과를 통해 제안된 알고리듬이 잡음 제거 및 외곽선 보존의 우수함을 확인하였다.
본 논문에서는 카메라 잡음 제거에 딥 러닝 알고리즘을 적용하는 연구를 진행하였다. 합성된 가우시언 잡음에 대하여 좋은 잡음 제거 성능을 보이는 DnCNN(Denoising Convolutional Network)를 이용하여 카메라 잡음을 제거하는 학습과 실험을 진행하였으며, 기준 실험으로는 RGB 색공간의 3채널 모두에 대하여 학습한 신경망(Neural Network)을 사용하였고, 본 논문의 실험에서는 그레이 이미지에 대하여 학습한 신경망을 사용하였다. 신경망의 평가를 위하여 딥 러닝 알고리즘 입력 이미지를 RGB 색공간(RGB Color Space)과 YCbCr 색공간(YCbCr Color Space) 2가지 색공간으로 표현하여 사용하였고, 입력 이미지에 노이즈를 첨가하기 위해 가우시안 노이즈(Gaussian Noise)를 이용하였다. 또한 가우시안 잡음과 다른 성질을 갖는 실제 카메라 잡음에 대해서도 학습과 테스트를 진행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.