• Title/Summary/Keyword: 가솔린엔진(gasoline engine)

Search Result 264, Processing Time 0.024 seconds

Schlieren, Shadowgraph, Mie-scattering Visualization of Diesel and Gasoline Sprays under GDCI Engine Low Load Condition (가솔린 직분식 압축착화 엔진 저부하 영역 디젤/가솔린 분무의 쉴리렌, 쉐도우그래프, 미산란법적 가시화)

  • Park, Stephen Sungsan;Kim, Donghoon;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • In this study, three visualization methods, Schlieren, Shadowgraph, and Mie-scattering, were applied to compare diesel and gasoline spray structures. Fuels were injected into a high pressure/high temperature constant volume chamber under the same ambient pressure and temperature condition of low load in gasoline direct injection compression ignition (GDCI) engine. Two injection pressures (40 and 80 MPa), two ambient pressures (4.2 and 1.7 MPa), and two ambient temperatures (908 and 677 K) were use. The images from the different methods were overlapped to show liquid and vapor phases more clearly. It was found that the gasoline fuel is more appropriate to form a lean mixture.

Comparison of Performance and Emissions Characteristics on 23cc Gasoline engine and LPG engine at WOT Condition (WOT조건에서 23cc 가솔린 엔진과 LPG 엔진의 성능 및 배기특성 비교)

  • Kim, B.G.;Choi, Y.H.;Oh, J.W.;Lee, D.G.;Kim, D.S.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • This paper presents the performance and emissions characteristics of a small spark-ignited 2-stroke gasoline and LPG engine. The engine used in this paper is a single cylinder, two-stroke, air-cooled SI engine for brush cutter. We measured the rpm, torque, fuel consumption and HC, CO, NOx emissions in associated with the dynamometer load at WOT. The results showed that as engine revolution speed decreased, the excess air ratio of gasoline engine kept going about 0.9 and that of LPG engine increased 0.83 to 1.05. Torque and power of gasoline engine was higher than LPG engine. In exhaust emissions, HC emissions of gasoline engine was lower than LPG engine. In low speed area, CO emissions of LPG engine was lower than gasoline engine. Both gasoline engine and LPG engine emitted little NOx emissions.

  • PDF

A Study on lgnition Voltage Control for Gasoline Engine Using Inverter (인버터를 사용한 가솔린엔진 점화전압 제어에 관한 연구)

  • 김광조;김남호
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.5
    • /
    • pp.74-79
    • /
    • 1997
  • 본 논문은 현재 사용되고 있는 가솔린엔진의 전기불꽃방전 점화장치의 점화전압에 대하여 조사하고, 점화전압을 엔진의 다양한 회전형태에 따라 적절하게 제어하는 방법에 대하여 연구하고 실험한 것이다. 기존의 점화장치는 고속회전에서는 통전시간의 제한으로, 그리고 기동시 에는 전지의 단자전압이 저하하여 높은 전기불꽃방전용 고전압을 얻을 수 없음으로 인하여, 고속성능이 저하하고 기동이 불확실해 진다. 이 실험에서 엔진의 회전형태에 따라 점화전압을 적절하게 제어함으로서 이러한 문제점들을 실용적으로 개선할 수 있음을 보여주었다.

  • PDF

Study on the Performance of 1.4L Gasoline Engine Intake-Manifold (1.4L급 가솔린 엔진용 흡기매니폴드의 성능에 관한 연구)

  • Park, Yun-Seo;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.992-995
    • /
    • 2010
  • 엔진 흡기시스템 중 흡기매니폴드는 가솔린엔진의 성능을 결정하는 매우 중요한 성능 인자이다. 본 연구에서는 1400cc급 가솔린 엔진용 흡기 매니폴드에 대한 유동해석과 리그 실험을 수행하였다. 압력차에 따른 유동 및 유량계수의 해석을 통하여 유동특성을 분석하였으며 실험적 평가를 통하여 공기유량계수의 결과치를 검증하였다. 해석과 실험 결과를 비교 분석하여, 해석값과 실험값의 오차를 확인하였다.

  • PDF

The Study on Performance and Emission of CNG as a Potential Fuel in Kore (한국의 잠재적인 연료인 CNG연료의 성능 및 배출물에 관한 연구)

  • Cho, Haeng-Muk;Chauhan, Bhupendra Singh
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.39-43
    • /
    • 2009
  • Gasoline engine have proved its utility in light, medium and heavy duty vehicle in every sector of the world community. The concern about long term availability of petroleum and the increasing threat for the environment by the increasing load of vehicular emission, compel the technology to upgrade itself for meeting the challenges. CNG is environmentally clean alternative to the existing SI Engines with out much change in the hardware. Many researchers have found this as a potential substitute to meet the energy requirement. Higher octane number and higher self ignition temperature make it a good gaseous fuel. Although power output is slightly lesser than the gasoline it's thermal efficiency is better than the gasoline for the same SI Engine. Results showed that reduced CO, hydrocarbon emissions is a favorable outcome, with slight increase in NOx emission when compared with gasoline fuel to dual fuel mode in the existing SI Engines.

  • PDF

An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine (가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究))

  • Kwon, K.R.;Ko, J.K.;Hong, S.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

Analysis of Performance and Emissions Characteristics on Gasoline Engine for Hybrid Vehicles with Optimum EGR Rate and the Cylinder Variation of EGR Rate (하이브리드용 가솔린 엔진에서 최적 EGR적용 및 실린더간 편차에 따른 성능 및 배출가스 특성 분석)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • EGR(Exhaust gas recirculation) provides an important contribution in achieving the development targets of low fuel consumption and low exhaust emission levels on gasoline engine for hybrid vehicles while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in gasoline engine for hybrid vehicles should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR with optimum EGR rate on fuel economy, combustion stability, engine performance and exhaust emissions. As the engine load becomes higher, the optimum EGR rate tends to increase. The increase in engine load and reduction in engine speed make the fuel consumption better. The fuel consumption was improved by maximum 5.5% at low speed, high load operating condition. As the simulated EGR variation on a cylinder is increased, due to the increase in cyclic variation, the fuel consumption and emissions characteristics were deteriorated simultaneously. To achieve combustion stability without a penalty in fuel consumption and emissions, the cylinder-to-cylinder variations must be maintained under 10%.

An usefulness study on estimation and control method of EGR ratio using intake manifold pressure in an gasoline engine (가솔린엔진에서 흡기관 압력을 이용한 EGR율의 추정 및 제어 방법에 관한 유용성 연구)

  • Park, Hyeong-Seon;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.806-813
    • /
    • 2014
  • The EGR system being reburned the part of the exhaust gas through intake system indicates more favorable emission characteristics to reduce NOx in a gasoline engine, but the case of inappropriate exhaust gas quantity induced from engine is fallen engine power caused by unstable combustion. In this study, we examined a method to predict EGR ratio according to various engine operation condition based by intake manifold pressure and confirmed such a prediction data through an experimental method. And after having constituted feedback EGR control algorithm in a base with such a prediction data, we acquired qualitatively similar results by having compared data provided through an EGR feedback control experiment with the data which calculated quantity of residual gas for the engine operation condition. Therefore, the applied algorithm and the system for feedback EGR control showed feasibility applied to real electronic control EGR technology.