• Title/Summary/Keyword: 가변요소

Search Result 417, Processing Time 0.038 seconds

Variable step size simulation using transmission line element (전달관로 요소를 이용한 가변스텝 시뮬레이션)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.682-687
    • /
    • 2000
  • In this paper, the simulation methods using transmission lines are studied and realized, which are necessary in design and analysis of hydraulic control systems. The basic idea of this method is that system components are separated by transmission line element for simulation. The PI-controller can keep inductance level as low as desired. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. Parallel hydraulic circuits are simulated using parallel processing algorithm. To shoe that using variable timestep size in each subsystem, simulation time can be reduced. Performance of the simulation results is compared with that of Runge Kutta method.

  • PDF

The method of dynamic software adaptation by Product-Line approach (제품계열 방법을 응용한 동적 소프트웨어 구성 기법)

  • Hwang Kil-Seung;Yang Young-Jong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.406-408
    • /
    • 2005
  • 실행 환경 및 상황에 맞게 스스로 소프트웨어의 구성과 서비스를 변경시키기 위한 적응형 소프트웨어의 개발을 위해서는 변경 대상 및 변경 기법의 정의가 중요하다. 본 논문에서는 소프트웨어의 구성요소 및 기능을 실시간에 변경하기 위해 제품계열 방법에서 주로 사용되는 Information Hiding 기반의 가변성 관리 기법과 Parameterization 기반의 가변성 관리기법을 사용한다. 두 방법을 사용하면 실행 과정에 영향을 주지 않으면서 소프트웨어의 구성요소를 변경하거나 특성을 customizing할 수 있다.

  • PDF

Study on Adequate Magnetic Core Shape by Distance Variation (가변하는 이격거리에 적합한 자성체 형상 연구)

  • Shin, Chang-Su;Chen, Yafei;Zhang, Hailong;Kim, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.473-474
    • /
    • 2019
  • 무선전력전달 시스템을 위한 코일을 설계함에 있어 코일 및 코어의 치수, 재료 및 형상은 효율과 직관된 요소이므로 가장 적절한 선택이 필요하다. 하지만 높은 효율을 가지는 무선전력전달 시스템을 설계하더라도 실제 이격거리는 가변하므로 예상했던 효율과 다른 결과가 야기된다. 본 연구에서는 기존의 E-E 형상과 C-C 형상 및 제안한 Plat C-C 형상을 페라이트 코어를 바탕으로 x-y-z 이격거리의 변화량에 따른, 결합계수를 유한요소해석 시뮬레이션을 통해 비교 및 분석하고 200W급 하드웨어를 통해 검증한다.

  • PDF

A 2-Dimensional Approach for Analyzing Variability of Domain Core Assets (도메인 핵심자산의 가변성 분석을 위한 2차원적 접근방법)

  • Moon Mi-Kyeong;Chae Heung-Seok;Yeom Keun-Hyuk
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.6
    • /
    • pp.550-563
    • /
    • 2006
  • Software product line engineering is a method that prepares for the future reuse and supports to seamless reuse in application development process. Commonality and variability play central roles in all product line development processes. Reusable assets will become core assets by explicitly representing C&V. Indeed, the variabilities that art identified at each phase of core assets development have different levels of abstraction. In the past, these variabilities have been handled in an implicit manner and without distinguishing the characteristics of each core assets. In addition, previous approaches have depended on the experience and intuition of a domain expert to recognize commonality and variability. In this paper, we suggest a 2-dimensional analyzing method that analyzes the variabilities of core assets in software product line. In horizontal analysis process, the variation types are analyzed in requirements, architecture, and component that are produced at each phase of development process. In vertical analysis process, variations are analyzed in different abstract levels, in which the region of commonality is identified and the variation points are refined. By this method, the traceability of variations between core assets will be possible and core assets can be reused seamlessly.

Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building (철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소)

  • Choun Young-Sun;Lee Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.93-103
    • /
    • 2006
  • It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Flexible Unit Floor Plan of Off-Site Construction Housing Considering Long-Lasting Housing Certification System (장수명주택 인증을 고려한 OSC공법 주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun;Roh, Jeong-Yeol;Kwon, Soo-Hye;Kim, Seung-Mo
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.103-117
    • /
    • 2021
  • With the current rapid changes in population and technology, the long-lastig housing certification system is a means of prolonging the physical and functional lifespan of a building. The certification requires differentiation between the structure and infill elements to allow for variability and ease of repairs. This works well with prefabricated houses so this study investigated the possibility of applying the long-lastig housing certification requirements to apartment construction using off-site construction (OSC) methods focused on the installation of bathrooms (plumbing and toilet) that differ from the traditional wet method. This study examined three different sized floor plans at 22 m2, 46 m2, and a combined one resulting in 69 m2. The larger 69 m2 plan utilized a removeable non-load bearing wall to increase flexibility in the layout of the floorplan. The apartments are constructed of steel reinforced concrete composite columns on a 9 m × 10.5 m grid with integrated slabs. The exterior and interior infill walls are all non-load bearing with some containing plumbing. This separation of the structure and infill walls can help meet some of the criteria in the long-lastig housing certification, particularly with the ease of repairs. Technologies that facilitate the replacement of infill elements that contain plumbing and other building services can benefit the nation by reducing carbon emissions and therefore tax incentives should be introduced to increase the adoption of the proposed construction methods.

Numerical Study on Effect of Using Elastic Pads in Flexible Forming Process (가변성형 공정에서 탄성 패드의 영향에 관한 수치적 연구)

  • Heo, Seong-Chan;Seo, Young-Ho;Noh, Hak-Gon;Ku, Tae-Wan;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.549-556
    • /
    • 2010
  • In general, materials that can be used to form elastic pads, such as urethane and rubber, are often used in flexible forming processes by inserting the pads between a blank and flexible die for smoothing the forming surface that is formed by a reconfigurable die. In this study, the effects of the elastic pad on formability in the flexible forming process for sheet metals are investigated by performing numerical simulations. In the simulation, the hyperelastic material model is used, where the urethane elastic pads serve as elastic cushions. Case studies are carried out for elastic materials with different hardness values and thicknesses. The results are used to evaluate formability by comparing the configuration of the deformed blank and its major cross-sectional profiles. It is verified that the elastic pad used in the flexible forming process for sheet materials should be hard and that its thickness should be chosen appropriately.

Design of a Variable Resonator for the Sacred Bell of the Great King Seongdeok (성덕대왕신종을 위한 가변형 명동의 설계)

  • Kim, Seock-Hyun;Jeong, Won-Tae;Kang, Yun-June
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.288-297
    • /
    • 2012
  • This study proposes a design model of the variable type resonator which corrects the temperature variance according to the season, in order to maximize the resonance effect in the Sacred bell of the Great King Seongdeok. In the bell, the 1st natural frequency (64 Hz) and the 2nd natural frequency (168 Hz) are the most important partial tones. Resonance conditions of the two components are determined for the internal acoustic cavity system, which consists of bell body cavity, gap and the resonator. Acoustic frequency response characteristics of the internal cavity are determined by the boundary element analysis using SYSNOISE. As an external factor, temperature variance according to the season largely influences the resonance condition and the length of the resonator should be controlled to maximize the resonance effect. As a measure, this study proposes a design model of the variable type resonator for the Sacred Bell of the Great King Seongdeok, which can control the length at the belfry according to the season.

Formal Definition and Consistency Analysis of Feature-Oriented Product Line Analysis Model (특성 지향의 제품계열분석 모델의 정형적 정의와 일관성 분석)

  • Lee Kwanwoo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • Product line analysis is an activity for analyzing requirements, their relationships, and constraints in a product line before engineering product line assets (e.g., architectures and components). A feature-oriented commonality and variability analysis (called feature modeling) has been considered an essential part of product line analysis. Commonality and variability analysis, although critical, is not sufficient to develop reusable and adaptable product line assets. Dependencies among features and feature binding time also have significant influences on the design of product line assets. In this paper. we propose a feature-oriented product line analysis model that extends the existing feature model in terms of three aspects (i.e., feature commonality and variability, feature dependency, and feature binding time). To validate the consistency among the three aspects we formally define the feature-oriented product line analysis model and provide rules for checking consistency.