• Title/Summary/Keyword: 가버 특징 벡터

Search Result 18, Processing Time 0.019 seconds

Robust Face Recognition based on Gabor Feature Vector illumination PCA Model (가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식)

  • Seol, Tae-In;Kim, Sang-Hoon;Chung, Sun-Tae;Jo, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.67-76
    • /
    • 2008
  • Reliable face recognition under various illumination environments is essential for successful commercialization. Feature-based face recognition relies on a good choice of feature vectors. Gabor feature vectors are known to be more robust to variations of pose and illumination than any other feature vectors so that they are popularly adopted for face recognition. However, they are not completely independent of illuminations. In this paper, we propose an illumination-robust face recognition method based on the Gabor feature vector illumination PCA model. We first construct the Gabor feature vector illumination PCA model where Gator feature vector space is rendered to be decomposed into two orthogonal illumination subspace and face identity subspace. Since the Gabor feature vectors obtained by projection into the face identity subspace are separated from illumination, the face recognition utilizing them becomes more robust to illumination. Through experiments, it is shown that the proposed face recognition based on Gabor feature vector illumination PCA model performs more reliably under various illumination and Pose environments.

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Eye Localization based on Multi-Scale Gabor Feature Vector Model (다중 스케일 가버 특징 벡터 모델 기반 눈좌표 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Oh, Du-Sik;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported thus far still need to be improved about precision and computational time for successful applications. In this paper, we propose an improved eye localization method based on multi-scale Gator feature vector models. The proposed method first tries to locate eyes in the downscaled face image by utilizing Gabor Jet similarity between Gabor feature vector at an initial eye coordinates and the eye model bunch of the corresponding scale. The proposed method finally locates eyes in the original input face image after it processes in the same way recursively in each scaled face image by using the eye coordinates localized in the downscaled image as initial eye coordinates. Experiments verify that our proposed method improves the precision rate without causing much computational overhead compared with other eye localization methods reported in the previous researches.

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

A Study on NPC Grouping of 3D Game using Gabor Characteristics (가버 특성을 이용한 3D 게임의 NPC 그룹핑에 관한 연구)

  • Park, Chang-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2836-2842
    • /
    • 2010
  • An NPC grouping method is proposed for various 3D games depending on their characteristics. Immovable objects tend to have particular orientation features in their Gabor filtering results whereas the movable objects controlled by AI appearing as a human or an animal do not. First of all, We analyzed directional and frequency domain features in the NPC object and configured them as 24 Gabor filter banks. Then, 24-dimensional feature vectors according to the scale and direction of the filter are calculated. Each extracted vector represents the energy of a certain direction. This energy indicates the particular direction strength of the object texture. Thus, using this property, NPCs could be grouped as artificial objects and natural objects effectively and it draws the game more speed and strategic actions as a result.

Adaptive Facial Expression Recognition System based on Gabor Wavelet Neural Network (가버 웨이블릿 신경망 기반 적응 표정인식 시스템)

  • Lee, Sang-Wan;Kim, Dae-Jin;Kim, Yong-Soo;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, adaptive Facial Emotional Recognition system based on Gabor Wavelet Neural Network, considering six feature Points in face image to extract specific features of facial expression, is proposed. Levenberg-Marquardt-based training methodology is used to formulate initial network, including feature extraction stage. Therefore, heuristics in determining feature extraction process can be excluded. Moreover, to make an adaptive network for new user, Q-learning which has enhanced reward function and unsupervised fuzzy neural network model are used. Q-learning enables the system to ge optimal Gabor filters' sets which are capable of obtaining separable features, and Fuzzy Neural Network enables it to adapt to the user's change. Therefore, proposed system has a good on-line adaptation capability, meaning that it can trace the change of user's face continuously.

Contactless Palmprint Recognition Based on the KLT Feature Points (KLT 특징점에 기반한 비접촉 장문인식)

  • Kim, Min-Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.11
    • /
    • pp.495-502
    • /
    • 2014
  • An effective solution to the variation on scale and rotation is required to recognize contactless palmprint. In this study, we firstly minimize the variation by extracting a region of interest(ROI) according to the size and orientation of hand and normalizing the ROI. This paper proposes a contactless palmprint recognition method based on KLT(Kanade-Lukas-Tomasi) feature points. To detect corresponding feature points, texture in local regions around KLT feature points are compared. Then, we recognize palmprint by measuring the similarity among displacement vectors which represent the size and direction of displacement of each pair of corresponding feature points. An experimental results using CASIA public database show that the proposed method is effective in contactless palmprint recognition. Especially, we can get the performance of exceeding 99% correct identification rate using multiple Gabor filters.

An Efficient Illumination Preprocessing Algorithm based on Anisotropic Smoothing for Face Recognition (얼굴 인식을 위한 Anisotropic Smoothing 기반 효율적 조명 전처리)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.236-245
    • /
    • 2008
  • Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an efficient illumination preprocessing method for face recognition. illumination preprocessing algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing effects of illumination. Due to the result of these improvements, face images preprocessed by the proposed illumination preprocessing method becomes to have more distinctive feature vectors(Gabor feature vectors). Through experiments of face recognition using Gabor jet similarity, the effectiveness of the proposed illumination preprocessing method is verified.

Iris Recognition using Gabor Wavelet and Fuzzy LDA Method (가버 웨이블릿과 퍼지 선형 판별분석 기법을 이용한 홍채 인식)

  • Go Hyoun-Joo;Kwon Mann-Jun;Chun Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1147-1155
    • /
    • 2005
  • This paper deals with Iris recognition as one of biometric techniques which is applied to identify a person using his/her behavior or congenital characteristics. The Iris of a human eye has a texture that is unique and time invariant for each individual. First, we obtain the feature vector from the 2D Iris pattern having a property of size invariant and using the fuzzy LDA which is further through four types of 2D Gabor wavelet. At the recognition process, we compute the similarity measure based on the correlation values. Here, since we use four different matching values obtained from four different directional Gabor wavelet and select the maximum value, it is possible to minimize the recognition error rate. To show the usefulness of the proposed algorithm, we applied it to a biometric database consisting of 300 Iris Patterns extracted from 50 subjects and finally got more higher than $90\%$ recognition rate.

A Study of Textured Image Segmentation using Phase Information (페이즈 정보를 이용한 텍스처 영상 분할 연구)

  • Oh, Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • Finding a new set of features representing textured images is one of the most important studies in textured image analysis. This is because it is impossible to construct a perfect set of features representing every textured image, and it is inevitable to choose some relevant features which are efficient to on-going image processing jobs. This paper intends to find relevant features which are efficient to textured image segmentation. In this regards, this paper presents a different method for the segmentation of textured images based on the Gabor filter. Gabor filter is known to be a very efficient and effective tool which represents human visual system for texture analysis. Filtering a real-valued input image by the Gabor filter results in complex-valued output data defined in the spatial frequency domain. This complex value, as usual, gives the module and the phase. This paper focused its attention on the phase information, rather than the module information. In fact, the module information is considered very useful at region analysis in texture, while the phase information was considered almost of no use. But this paper shows that the phase information can also be fully useful and effective at region analysis in texture, once a good method introduced. We now propose "phase derivated method", which is an efficient and effective way to compute the useful phase information directly from the filtered value. This new method reduces effectively computing burden and widen applicable textured images.