• Title/Summary/Keyword: 가구패턴

Search Result 139, Processing Time 0.026 seconds

Time series clustering for AMI data in household smart grid (스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구)

  • Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.791-804
    • /
    • 2020
  • Residential electricity consumption can be predicted more accurately by utilizing the realtime household electricity consumption reference that can be collected by the AMI as the ICT developed under the smart grid circumstance. This paper studied the model that predicts residential power load using the ARIMA, TBATS, NNAR model based on the data of hour unit amount of household electricity consumption, and unlike forecasting the consumption of the whole households at once, it computed the anticipated amount of the electricity consumption by aggregating the predictive value of each established model of cluster that was collected by the households which show the similiar load profile. Especially, as the typical time series data, the electricity consumption data chose the clustering analysis method that is appropriate to the time series data. Therefore, Dynamic Time Warping and Periodogram based method is used in this paper. By the result, forecasting the residential elecrtricity consumption by clustering the similiar household showed better performance than forecasting at once and in summertime, NNAR model performed best, and in wintertime, it was TBATS model. Lastly, clustering method showed most improvements in forecasting capability when the DTW method that was manifested the difference between the patterns of each cluster was used.

Emergence of New Towns and Changes in Commuting patterns of Seoul Residents (수도권 신도시 건설과 서울 거주자의 통근통행패턴 변화)

  • Kim, Hyun-Woo;Kim, Ho-Yeon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.437-451
    • /
    • 2011
  • The purpose of this study is to identify the factors that influence commuting patterns of Seoul residents after the construction of new towns. To find the determinants of commuting time for residents with jobs in Seoul, a multiple regression analysis is performed using household survey data. Overall, the findings present a plausible picture of the spatial configuration in Seoul, where younger residents with growing families move out to the suburbs to become owners of apartment homes, and drive or use mass transportation to get to work. As they get older and wealthier, other things being equal, they gravitate towards the city centre in order to reduce the time wasted on commuting. While their occupations appear to play little role, it seems that the entrapment hypothesis on female workers is supported as well. In addition, excess commuting is still prevalent due to jobs-housing mismatch in Seoul, although it is less severe than in the past. Based on these results, planners should devise better strategies to solve the inefficient commuting problem.

  • PDF

Development of Home Electrical Power Monitoring System and Device Identification Algorithm (가정용 전력 모니터링 시스템 및 장치식별 알고리즘 개발)

  • Park, Sung-Wook;Seo, Jin-Soo;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper presents an electrical power monitoring system for home energy management and an automatic appliance-identification algorithm based on the electricity-usage patterns collected during the monitoring tests. This paper also discusses the results of the field tests of which the proposed system was voluntarily deployed at 13 homes. The proposed monitoring system periodically measures the amount of power consumption of each appliance with a pre-specified time interval and effectively displays the essential information provided by the monitored data which is required users to know in order to save power consumption. Regarding the field tests of the monitoring system, the households responded that the system was useful in saving electricity and especially the electricity-usage patterns per appliances. They also considered that the predicted amount of the monthly power consumption was effective. The proposed appliance-identification algorithm uses 4 patterns: Zero-Crossing Rate(ZC), Variation of On State(VO), Slope of On State(SO) and Duty Cycle(DC), which are applied over the 2 hour interval with 25% of it on state, and it yielded 82.1% of success rate in identifying 5 kinds of appliances: refrigerator, TV, electric rice-cooker, kimchi-refrigerator and washing machine.

A Study on the Development of Bamboo Decorating Tiles (죽세장식타일 개발 연구)

  • 조규춘
    • Archives of design research
    • /
    • v.14 no.4
    • /
    • pp.117-126
    • /
    • 2001
  • A new functional meaning has been given as natural resource to bamboo through reanalysis. Bamboo products contributed to creating added-value of pro-environment. In this study, a potential efficiency and vision of bamboo products and crafts are presented. As bamboo plywood and bamboo decorating paper were developed followed by academic and technological support, an activation of markets has been pursued and bamboo pattern tiles for new furniture was developed. This study examined kinds and characteristics of bamboo and processing of raw material and how to express with the material. Through advanced technology, it identified traditional functions and technological mistakes and analysed domestic and overseas applications to enhance utility of plywood made of bamboo. Bamboo pattern tiles were developed for decorating of furniture doors based on bamboo pattern paper. For patterns, 'tortoise, cranes, and deer'meaning eternity and new millenium among Ten Korean Longevity Animals are simply and lively represented. Series of the sun and mountain use effects of bamboo pieces to present bright images and to maximize quality of bamboo. A pattern of '卍'incorporates mystery of the cosmos and meaning of temples together with traditional patched wrapping cloth, Arirang and Chilgyopannori for beautiful ornamentation. Bamboo decorating tiles are made through accumulation of technologies by a cooperation with industries of bamboo equipment and production of furniture in Damyang Bamboo Products Complex. Processing of raw materials is peformed with equipment of Damyang. Development of samples and production and delivery of bamboo goods are handled in Design Venture of Chosun University Chamber. Developed goods decorating doors of furniture are in sale by an order from furniture industries.

  • PDF

Exploring Latent Trajectory Classes of Change in Depression Measured Using CES-D (CES-D로 측정한 우울증상 변화궤적의 잠재계층 탐색 -GMM을 활용한 한국복지패널 데이터의 재분석-)

  • Hoe, Maanse
    • Korean Journal of Social Welfare
    • /
    • v.66 no.1
    • /
    • pp.307-331
    • /
    • 2014
  • The purpose of the present study was to explore latent trajectory classes in the longitudinal change of depression measured using CES-D. The study data was extracted from the Korea Welfare Panel Study Data collected from 2006 to 2010. It consisted of 8,900 adults with aged over 19. Growth Mixture Modeling(GMM) was used to explore possible latent trajectory classes in the change of depression over time. The major findings of the present study were as follows. First, there were five latent trajectory classes in the longitudinal change of depression. Second, there were 4 latent trajectory classes of depression for people in a non-poverty group, while there were 3 latent trajectory classes of depression for people in a poverty group. These findings lead to three conclusions. First, 12.1% of the sample shows that their depression level increases over time. Second, the previous research findings of decreased depression over time might be caused by the combination of two latent trajectory classes(a low level depression sustain group and a depression decrease group). Lastly, the latent trajectory classes in the longitudinal change of depression, which are found in the present study, might be caused by interactions among depression, age, and poverty status.

  • PDF

Analysis of Apartment Power Consumption and Forecast of Power Consumption Based on Deep Learning (공동주택 전력 소비 데이터 분석 및 딥러닝을 사용한 전력 소비 예측)

  • Yoo, Namjo;Lee, Eunae;Chung, Beom Jin;Kim, Dong Sik
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1373-1380
    • /
    • 2019
  • In order to increase energy efficiency, developments of the advanced metering infrastructure (AMI) in the smart grid technology have recently been actively conducted. An essential part of AMI is analyzing power consumption and forecasting consumption patterns. In this paper, we analyze the power consumption and summarized the data errors. Monthly power consumption patterns are also analyzed using the k-means clustering algorithm. Forecasting the consumption pattern by each household is difficult. Therefore, we first classify the data into 100 clusters and then predict the average of the next day as the daily average of the clusters based on the deep neural network. Using practically collected AMI data, we analyzed the data errors and could successfully conducted power forecasting based on a clustering technique.

Estimating the Trip Purposes of Public Transport Passengers Using Smartcard Data (스마트카드 자료를 활용한 대중교통 승객의 통행목적 추정)

  • JEON, In-Woo;LEE, Min-Hyuck;JUN, Chul-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.28-38
    • /
    • 2019
  • The smart card data stores the transit usage records of individual passengers. By using this, it is possible to analyze the traffic demand by station and time. However, since the purpose of the trip is not recorded in the smart card data, the demand for each purpose such as commuting, school, and leisure is estimated based on the survey data. Since survey data includes only some samples, it is difficult to predict public transport demand for each purpose close to the complete enumeration survey. In this study, we estimates the purposes of trip for individual passengers using the smart card data corresponding to the complete enumeration survey of public transportation. We estimated trip purposes such as commute, school(university) considering frequency of O-D, duration, and departure time of a passenger. Based on this, the passengers are classified as workers and university students. In order to verify our methodology, we compared the estimation results of our study with the patterns of the survey data.

Comparison of Housewives' Agricultural Food Consumption Characteristics by Age (주부의 연령대별 농식품 소비 특성 비교)

  • Hong, Jun-Ho;Kim, Jin-Sil;Yu, Yeon-Ju;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.83-89
    • /
    • 2021
  • Lifestyle is changing rapidly, and food consumption patterns vary widely among households as dietary and food processing technologies evolve. This paper reclassified the food group of consumer panel data established by the Rural Development Administration, which contains information on purchasing agricultural products by household unit, and compared the consumption characteristics of agricultural products by age group. The criteria for age classification were divided into groups in their 60s and older with a prevalence of 20% or more metabolic diseases and groups in their 30s and 40s with less than 10%. Using the LightGBM algorithm, we classified the differences in food consumption patterns in their 30s and 50s and 60s and found that the precision was 0.85, the reproducibility was 0.71, and F1_score was 0.77. The results of variable importance were confectionery, folio, seasoned vegetables, fruit vegetables, and marine products, followed by the top five values of the SHAP indicator: confectionery, marine products, seasoned vegetables, fruit vegetables, and folio vegetables. As a result of binary classification of consumption patterns as a median instead of the average sensitive to outliers, confectionery showed that those in their 30s and 40s were more than twice as high as those in their 60s. Other variables also showed significant differences between those in their 30s and 40s and those in their 60s and older. According to the study, people in their 30s and 40s consumed more than twice as much confectionery as those in their 60s, while those in their 60s consumed more than twice as much marine products, seasoned vegetables, fruit vegetables, and folioce or logistics as much as those in their 30s and 40s. In addition to the top five items, consumption of 30s and 40s in wheat-processed snacks, breads and noodles was high, which differed from food consumption patterns in their 60s.

Comparison Between Travel Demand Forecasting Results by Using OD and PA Travel Patterns for Future Land Developments (장래 개발계획에 의한 추가 통행량 분석시 OD 패턴적용과 PA 패턴적용의 분석방법 비교)

  • Kim, Ikki;Park, Sang Jun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.113-124
    • /
    • 2015
  • The KOTI(Korea Transport Institute) released the new version of KTDB(Korea Transport DataBase) in public. The new KTDB is different from the past KTDB in using the concept of trip generation and trip attraction instead of using the concept of Origin-Destination (OD), which was used in the past KTDB. Thus, the appropriate analysis method for future travel demand became necessary for the new type of KTDB. The method should be based on the concept of PA(Production-Attraction). This study focused on analysis of trip generation and trip distribution related to newly generated trips by future land developments. The study also described clearly the standardized forecasting process and methods with PA travel tables. The study showed that the analysis results with OD-based analysis can be different from the results with PA-based analysis in forecasting travel demand for a simple example case even though they used exactly same orignal travel data. Therefore, this study emphasized that a proper method should be applied with the new PA-based KTDB. It is necessary to prepare and disseminate guidelines of the proper forecasting method and application with PA-based travel data for practician.

An Activity Recognition Algorithm using a Distributed Inference based on the Hidden Markov Model in Wireless Sensor Networks (WSN환경에서 은닉 마코프 모텔 기반의 분산추론 기법 적용한 행위인지 알고리즘)

  • Kim, Hong-Sop;Han, Man-Hyung;Yim, Geo-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.231-236
    • /
    • 2009
  • 본 연구에서는 집이나 사무실과 같은 일상 공간에서 발생할 수 있는 연간의 일상생활행위 (ADL: Activities of Daily Living) 들을 인지하는 분산 모델을 제시한다. 사용자의 환경 정보, 위치 정보 및 행위 정보를 간단한 센서들이 부착된 가정용 기기들과 가구, 식기들을 통해 무선 센서 네트워크를 통해 수집하며 분석한다. 하지만 이와 같은 다양한 기기의 활용과 충분히 분석되어지지 않은 데이터들은 본 논문에서 제시하는 일상 환경에서 고차원의 ADL 모델을 구축하기 어렵게 한다. 그러나 ADL들이 생성하는 센서 데이터들과 센서 데이터들의 순서들은 어떤 행위가, 이루어지고 있는지 인지할 수 있도록 도와준다. 따라서 이 센서 데이터들의 순서를 특정 행위 패턴을 분석하는 데 활용하고, 이를 통해 분산 선형 시간 추론 알고리즘을 제안한다. 이 알고리즘은 센서 네트워크와 같은 소규모 시스템에서 행위를 인지하는 데 적절하다.

  • PDF