• 제목/요약/키워드: 가공역

Search Result 182, Processing Time 0.026 seconds

Design of Weld Line of a Tailor Welded Blank by Inverse Finite Element Analysis (유한요소 역해석을 이용한 Tailor Welded Blank의 용접선 설계)

  • Lee, Choong-Ho;Huh, Hoon;Han, Soo-Sik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.89-92
    • /
    • 1997
  • Design of a weld line in a tailor welded blank is indispensable for good manufacturing of stamped parts as assigned, since the intial weld line is distorted severely with forming. The initial weld line has to be determined such that desired weld line in a formed part can be obtained. The initial weld line was predicted by inverse finite element analysis from the desired weld line in a formed part. The inverse approach is applied to the cylindrical and square cup drawing with tailor welded blanks. The applications demonstrates that the approach is useful for design of weld line of tailor welded blank.

  • PDF

A Study of One-Step Finite element method (One-Step 유한요소법에 관한 연구)

  • Ahn H. G.;Lee C. H.;Moon W. S.;Go C. S.;Jung D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.414-417
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

Analysis of Rectangular Cup Drawing Processes with Large Aspect Ratio Using Multi-Stage Finite Element Inverse Analysis (다단계 유한요소 역해석을 이용한 세장비가 큰 직사작컵 성형 공정의 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes with large aspect ratio, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem. as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Design of Porcess Parameters in Axisymmetric Multi-step Deep Drawing by a Finite Element Inverse Method (유한요소 역 해석을 이용한 축대칭 다단계 박판성형에서의 공정변수 설계에 관한 연구)

  • Cho, Cheon-Soo;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.300-310
    • /
    • 1997
  • A finite element inverse method is introduced for direct prediction of blank shapes, strain distributions, and reliable intermediate shapes from desired final shapes in axisymmetric multi-step deep drawing processes. This mothod enables the determination of process disign. The approach deals with the Hencky's deformation theory. Hill's second order yield criterion, simplified boundary conditions, and minimization of plastic work with constraints. The algorithm developed is applied to motor case forming, and cylindrical cup drawing with the large limit drawing ratio so that it confirms its validity by demonstrating resonably accurate numerical results of each problem. Numerical examples reveal the reason of difficulties in motor case forming with corresponding limit diagrams.

  • PDF

On the Role of Kinematic Hardening Rules in Predicting Relaxation Behavior (응력이완 거동의 예측에 대한 이동경화법칙의 역할)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.579-585
    • /
    • 2008
  • Numerous experimental investigations on metallic materials and solid polymers have shown that relaxation behavior is nonlinearly dependent on prior strain rate. The stress drops in a constant time interval nonlinearly increase with an increase of prior strain rate. And the relaxed stress associated with the fastest prior strain rate has the smallest stress magnitude at the end of relaxation periods. This paper deals with the performance of three classes of unified constitutive models in predicting the characteristic behaviors of relaxation. The three classes of models are categorized by a rate sensitivity of kinematic hardening rule. The first class uses rate-independent kinematic hardening rule that includes the competing effect of strain hardening and dynamic recovery. In the second class, a stress rate term is incorporated into the rate-independent kinematic hardening rule. The final one uses a rate-dependent format of kinematic hardening rule.

Determination of the Forming Limit Strain of Sheet Metal Using Inverse Quartic Curve Fitting (역4차식 곡선근사에 의한 판재 성형한계변형률의 결정)

  • Lee, J.S.;Kim, J.D.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.328-333
    • /
    • 2013
  • The current study aims to determine the limit strains more accurately and reasonably when producing a forming limit curve (FLC) from experiments. The international standard ISO 12004-2 in its recent version (2008) states that the limit major strain should be determined by using the best-fit inverse second-order parabola through the experimental strain distribution. However, in cases where fracture does not occur at the center of the specimen, due to insufficient lubrication, the inverse parabola does not give a realistic fit because of its intrinsic symmetry in shape. In this study it is demonstrated that an inverse quartic function can give a much better fit than an inverse parabola in almost all FLC test samples showing asymmetric strain distributions. Using a quartic fit creates more reliable FLCs.

Die Design in Mandrel Drawing by using Backward Tracing Scheme: A Case for Hollow Linear Motion Guide Rail (역추적 기법을 활용한 중공형 LM-Guide Rail의 맨드렐 인발 금형 설계)

  • Kim, B.M.;Kim, S.H.;Lee, K.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.300-305
    • /
    • 2017
  • In this paper, a design method for an intermediate die was developed to manufacture a hollow linear motion guide rail in mandrel drawing process based on virtual die method and backward tracing scheme. FE simulations and mandrel drawing experiments using Mn55Cr carbon steel were performed to prove the effectiveness of the proposed design method. Results of FE simulations and experiments showed that the proposed design method could lead to drawn products with sound shape and the highest dimensional precision.

Preform Design in forging of Spline of Side Gear by the FEM (강소성 유한요소법의 역추적기법을 활용한 차동사이드기어의 스플라인 성형에 관한 연구)

  • 김상현;강범수;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.129-136
    • /
    • 1994
  • Differential side bevel gears have been produced by machining process, but recently cold forging process for the bevel gear is under development in domestic industry. This study presents the possibility to form not only bevel gear but also spline gear at the same time using the experiment and numerical analysis. The preform shape is designed to form both bevel gear and spline gear simultaneously by the backward tracing scheme of the rigid-plastic finite element method(FEM). The experimental results confirm that the numerically-designed preform is satisfactory to form both bevel gear and spline gear. It is noted that the backward tracing scheme is helpful in designing preforms.

  • PDF

Optimum Cooling System Design of Injection Mold using Back-Propagation Algorithm (오류역전파 알고리즘을 이용한 최적 사출설형 냉각시스템 설계)

  • Tae, J.S.;Choi, J.H.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.357-360
    • /
    • 2009
  • The cooling stage greatly affects the product quality in the injection molding process. The cooling system that minimizes temperature variance in the product surface will improve the quality and the productivity of products. In this research, we tried the back-propagation algorithm of artificial neural network to find an optimum solution in the cooling system design of injection mold. The cooling system optimization problem that was once solved by a response surface method with 4 design variables was solved by applying the back-propagation algorithm, resulting in a solution with a sufficient accuracy. Furthermore the number of training points was much reduced by applying the fractional factorial design without losing solution accuracy.

  • PDF

A Study on the Pulling Force Characteristic of the Reverse Screw for the Metal Fastening Method (Metal Fastening 공법을 위한 Reverse Screw의 견인력 특성에 관한 연구)

  • Kim, Tae-Hyung;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The metal fastening method is the new technology to repair cracks in the casting material using specially designed reverse screws. In this study, we conduct the finite element analysis to analyze the pulling force characteristic of a reverse screw, the core component of the metal fastening method, with respect to the change of the applying torque, frictional coefficient and front screw angle. The simplified analysis model with single screw pitch is proposed for convergency of the non-linear contact analysis. As a results, the pulling force of a reverse screw increase in proportion to the applying torque but exponentially decrease according to frictional coefficient. And also we can find the optimum front screw angle with the largest pulling force is $20^{\circ}$.