• Title/Summary/Keyword: 風洞

Search Result 765, Processing Time 0.033 seconds

Optimum Structural Design of a Triaxial Load Cell for Wind Tunnel Test (풍동용 3 축 로드셀의 구조최적설계)

  • Lee, Jae-Hoon;Song, Chang-Kon;Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.226-232
    • /
    • 2011
  • In this study, an optimized design of a triaxial load cell has been developed by the use of finite element analysis, design of experiment and response surface method. The developed optimal design was further validated by both stress-strain analysis and natural vibration analysis under an applied load of 30 kgf. When vertical, horizontal, and axial loads of 30 kgf were applied to the load cell with the optimal design, the calculated strains were satisfied with the required strain range of $500{\times}10^{-6}{\pm}10%$. The natural vibration analysis exhibited that the fundamental natural frequency of the optimally designed load cell was 5.56 kHz and higher enough than a maximum frequency of 0.17 kHz which can be applied to the load cell for wind-tunnel tests. The satisfactory sensitivity in all triaxial directions also suggests that the currently proposed design of the triaxial load cell enables accurate measurements of the multi-axial forces in wind-tunnel tests.

A Study on the Calculation of Turbofan Engine Installed Performance for a Supersonic Aircraft (초음속 항공기에 장착되는 터보팬엔진의 장착성능산정에 관한 연구)

  • 김원철;김지현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • During the preliminary design phase of aircraft development, it is necessary to evaluate many potential engine/airframe combinations to determine the best solution to given set of mission requirements and it is very important to establish a methodology to calculate precisely engine installed performance. It was carried out to calculate turbofan engine installed performance of a supersonic aircraft for a given engine/aircraft configuration. Thus "Thrust minus drag accounting system" was introduced to identify and calculate the elements of installed thrust or installed propulsive force by using the database based on wind tunnel test data. This paper describes the calculated results of installed thrust of turbofan engine for a supersonic aircraft. aircraft.

An Experimental Study on the flow Characteristics of a Supersonic Turbine Cascade as the Leading Edge Shape and the Nozzle-Cascade Cap (초음속 터번 익렬 앞전 형상 및 노즐-익렬 간격에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan;Jeong Ho-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.66-72
    • /
    • 2005
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested for various blade leading edge shapes and gaps between the nozzle and cascade. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

Behaviors of Mach Disk in Underexpanded Supersonic Moist Jet (초음속 습공기 제트에서 발생하는 마하디스크의 거동)

  • 백승철;김희동;권순범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.87-90
    • /
    • 2003
  • It has been well known that the major feature of compressible flow fields might be different depending on their formation processes. The objectives of the present study is to investigates the effect of jet development on the time history of supersonic jet flow field, accompanying nonequilibrium condensation. Especially, the behaviors of Mach disk diameter and location in a supersonic moist air jet are presented in terms of nozzle pressure ratio and initial relative humidity. The relative humidity of moist air is controlled at the nozzle supply, and the nozzle pressure ratio is varied to obtain the moderately underexpanded flows at the exit of the nozzle, installed in an indraft wind tunnel. It is found that at the same pressure ratio the Mach disk diameter increases with the initial relative humidity, while moves further upstream. Furthermore, the values of Mach disk diameter and location for increasing pressure ratio show larger than those for increasing.

  • PDF

Sunroof Buffeting Simulation of a Simplified Car Model using PAM-FLOW (PAM-FLOW를 이용한 단순차량 모델의 썬루프 버페팅 소음 해석)

  • Lee, Dong-Guk;Park, Il-Kyoo;Lim, Jong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.198-204
    • /
    • 2014
  • This paper presents a benchmark test result of an application of computational fluid dynamics(CFD) analysis of automotive sunroof buffeting simulation. Computational analyses of flow over an open sunroof of a simple vehicle model called as HAWT(Hyundai aeroacoustic wind tunnel) model were performed to study the buffeting phenomenon and to predict the buffeting noise level and its frequency. Computations are performed for sunroofs with PAM-FLOW software which is one of powerful CFD code of ESI group. Numerical predictions are compared with result from the tunnel test measurements. It is shown that CFD analysis has great potential for sunroof design and development by predicting buffeting noise.

Analysis of Wind Pressure Coefficient for Spatial Structure Roofs by Wind Load Standards and Wind Tunnel Tests (국가별 풍하중 기준과 풍동실험에 따른 대공간 구조물 지붕의 풍압계수 분석)

  • Cheon, Dong-jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.103-113
    • /
    • 2017
  • Spatial Structure has suffered from a lot of damage due to the use of lightweight roofs. Among them, the damage caused by strong winds was the greatest, and the failure of the calculation of the wind load was the most frequent cause. It provides that wind tunnel test is used to calculate the wind load. However, it is often the case that the wind load is calculated based on the standard of wind load in the development design stage. Therefore based on this, the structure type and structural system and member design are often determined. Spatial structure is usually open at a certain area. The retractable roof structure should be operated with the open roof in some cases, so the wind load for the open shape should be considered, but it is not clear on the basis of the wind load standard. In this paper, the design wind pressure of a closed and retractable roof structure is calculated by KBC2016, AIJ2004, ASCE7-10, EN2005, and the applicability of wind pressure coefficient is compared with wind tunnel test.

A Design and Fabrication of Drone-AirFrame adpopting Topology Optimization using 3D Printer (위상최적화 기법과 3D Printer를 이용한 드론 기체의 설계와 제작)

  • Lee, Kyu-Man;Kim, Yong-Suk;Lee, Jong-Duk;Kim, Heung-Up;Han, Dong-Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.308-309
    • /
    • 2015
  • 최근 들어 일반인들도 다중 콥터와 4k 고성능 카메라를 장착한 상용 드론을 구매하여 자신의 취미 활동용으로 사용하고 있다. 드론을 이용한 많은 동호회가 생겨나고 1인 1드론, 개인용 드론의 시대가 시작되고 있다. 또한 사물인터넷의 시대에 걸맞게 아두이노, 라즈베리파이와 같은 오픈하드웨어 플랫폼과 오픈 소스를 이용하고 저가형 3D printer 의 보급으로 자신만의 독특한 형태를 지니는 기체 제작을 시작하고 있다. 이에 본 논문에서는 3D 캐드를 이용한 위상최적화 기법을 적용하여 기존 상용 기체의 강성은 그대로 유지하되 기체 프레임 무게를 절반으로 줄인다. 또한, 풍동실험을 진행해서 기존 기체에서 발생하는 유체흐름을 분석하고 새로운 기체를 적용했을 경우에도 유사한 유체흐름이 나타나도록 설계하여 3D 프린터를 사용하여 제작하였다.

  • PDF

COMPUTATIONAL PREDICTION OF ICE ACCRETION AROUND AIR INTAKE OF AIRCRAFT (CFD를 이용한 항공기 공기 흡입구 주위 결빙 예측)

  • Jung, K.Y.;Ahn, G.B.;Jung, S.K.;Myong, R.S.;Cho, T.H.;Shin, H.B.;Jung, J.H.;Choi, Y.H.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.465-468
    • /
    • 2011
  • Ice accretion on aircraft surface can greatly deteriorate the safety of aircraft. In particular, it can be a cause of impediment for aircraft performances such as aerodynamic characteristics, control, and engine. Numerical simulation of icing accretion based on the state-of-art CFD techniques can be alternative to expensive icing wind tunnel test or flight test. In this study, icing conditions are defined in order to predict the ice accretions around the air intake of aircraft. Then the range and amount of ice accretion on the intake in icing wind tunnel were investigated In addition, a study on the size effect of icing wind tunnel was conducted in order to check the compatibility with the real in-flight test environment.

  • PDF

Development of Simulation Program of Vehicle Thermal Managements System (차량용 열제어 관리 시스템의 성능 시뮬레이션 프로그램 개발)

  • Bae, Suk-Jung;Heo, Hyung-Seok;Kim, Hyung-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.345-348
    • /
    • 2008
  • The computer-aided performance simulation can reduce periods for development of products and cut down on the cost comparing with former trial-and-error procedures. This study has developed a simulation program for a vehicle thermal management system integrating an engine cooling system and an air conditioning system considering interactions and arrangement of air side heat exchangers such as power steering oil cooler, air-cooled transmission oil cooler, condenser, and radiator. The program may be also used for the system performance analysis according to the configuration of the engine coolant side heat exchangers such as water-cooled transmission oil cooler, EGR cooler, and heater core. Experiments utilizing an environmental wind tunnel has been conducted to assess the performance of the system according to the arrangement of air side heat exchangers. Some modification of the coolant loop layout can enhance the heat core performance up to 7% according to the results of the simulations.

  • PDF

Design and Wind Tunnel Tests of a Natural Laminar Flow Airfoil (자연층류 익형 설계 및 시험)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul;Kim, Eung-Tae;Lee, Dae-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.354-357
    • /
    • 2008
  • Drag reduction is one of main concerns for commercial aircraft companies than ever because fuel price has been tripled in ten years. In this research, Natural Laminar Flow airfoil is designed and tested to reduce drag at cruise condition, $c_l$=0.3, Re=3.4${\times}$10$^6$ and M=0.6. NLF airfoil is characterized by delayed transition from laminar to turbulent flow, which comes from maintaining favorable pressure gradient to downstream. Transition is predicted by solving Boundary Layer equations in viscous boundary layer and by solving Euler Equation outside the boundary layer. Once boundary layer thickness and momentum thickness are obtained, $e^N$-method is used for transition point prediction. As results, KARI's NLF airfoil is designed and shows better characteristics than NLF-0115. The characteristics are tested and verified at low Reynolds numbers, but at high Reynolds numbers, laminar flow characteristics are not obtainable because of fully turbulent flow over airfoil surfaces. Precious experiences, however, relating NLF airfoil design, subsonic and transonic tests are acquired.

  • PDF