• Title/Summary/Keyword: 對話

Search Result 3,158, Processing Time 0.036 seconds

Cross-Texting Prevention System using Korean Chat Corpus (한글 채팅 말뭉치를 이용한 크로스-텍스팅 방지 시스템)

  • Lee, Da-Young;Who, Hwan-Gue
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.377-382
    • /
    • 2020
  • cross-texting은 실수로 의도하지 않은 상대방에게 메세지를 잘못 전송하는 것을 말한다. 휴대폰 메신저 사용이 활발해짐에 따라 이 같은 실수가 빈번하게 발생하는데 메신저에서 제공하는 기능은 대체로 사후 해결책에 해당하고 사용자가 사전에 실수를 발견하기는 어렵다. 본 논문에서는 사용자가 작성한 문장의 형식적 자질를 분석하여 현재 참여중인 대화에서 작성한 문장이 cross-texting인지를 판별하는 모델을 제안했다. 문장에서 높임법, 표층적 완성도 자질을 추출하고 이를 통해 특정 사용자의 대화를 모델링하여 주어진 문장이 대화에 부합하는지 여부를 판단한다. 이같은 방식은 채팅방의 이전 기록만으로도 사용자가 작성한 문장이 cross-texting인지 여부를 쉽게 판단할 수 있는 힌트를 제공할 수 있다. 실제 메신저 대화 말뭉치를 이용해 제작한 데이터에서 94% 정확도로 cross-texting을 탐지했다.

  • PDF

Mitigating Hate Speech in Korean Open-domain Chatbot using CTRL (한국어 오픈 도메인 대화 모델의 CTRL을 활용한 혐오 표현 생성 완화)

  • Jwa, Seung Yeon;Cha, Young-rok;Han, Moonsu;Shin, Donghoon
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.365-370
    • /
    • 2021
  • 대형 코퍼스로 학습한 언어 모델은 코퍼스 안의 사회적 편견이나 혐오 표현까지 학습한다. 본 연구에서는 한국어 오픈 도메인 대화 모델에서 혐오 표현 생성을 완화하는 방법을 제시한다. Seq2seq 구조인 BART [1]를 기반으로 하여 컨트롤 코드을 추가해 혐오 표현 생성 조절을 수행하였다. 컨트롤 코드를 사용하지 않은 기준 모델(Baseline)과 비교한 결과, 컨트롤 코드를 추가해 학습한 모델에서 혐오 표현 생성이 완화되었고 대화 품질에도 변화가 없음을 확인하였다.

  • PDF

Dataset for Interactive Recommendation System (인터랙션 기반 추천 시스템 개발을 위한 데이터셋 연구)

  • Chung, Euisok;Kim, Hyun Woo;Oh, Hyo-Jung;Song, Hwa Jeon
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.481-485
    • /
    • 2020
  • AI와 사용자간의 대화를 통해 사용자의 요구사항을 파악하고, 해당 요구사항에 적합한 상품을 추천하는 형상을 인터랙션 기반 추천 시스템의 한 예로 볼 수 있다. 우리는 해당 시스템 개발을 위하여 의상 코디셋 추천을 위한 대화 기반 데이터셋을 구축하였다. 데이터셋은 대화와 의상 추천 절차를 반복하여 사용자가 원하는 의상셋을 찾아가는 내용으로 구성된다. 그리고, AI의 코디셋 추천 기술 검증을 위해 두가지 의상 추천 평가셋을 제안한다. 본 논문은 대화 데이터셋 및 관련 평가셋의 개발 절차 및 구성에 대하여 기술하고, 관련된 실험 결과 일부를 보여준다.

  • PDF

A prototype of digital humans capable of emotionally using deep generative models (사전학습 기반 생성모델을 이용한 정서적 지지형 디지털 휴먼 프로토타입 구현)

  • Song, Chejung;Lee, Jee Hang
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1005-1008
    • /
    • 2021
  • 메타버스의 산업적/학술적 가치가 증대되면서, 실세계 인간과 메타버스 내 디지털 휴먼과의 상호작용 시스템 또한 큰 조명을 받고 있다. 본 논문에서는 인간과 디지털 휴먼이 상호작용할 때, 인간의 발화에 대해 감성적 지지가 가능한 디지털 휴먼 프로토타입을 소개한다. 대화의 의미에 따른 동작 생성이 가능한 아바타 구축 공개 프레임워크를 도입하고, 사전학습모델을 바탕으로 감성적 지지가 가능한 심층 대화 생성 모델 기반 대화 시스템을 여기에 통합하여 인간의 감성 상태에 따른 동작과 대화를 진행하는 감성 지지형 디지털 휴먼 프로토타입을 구현하였다. 이러한 프로토타입을 고도화 하면, 향후 메타버스 기반 정신 건강 케어 및 디지털 치료제로의 확장이 가능할 것으로 사료된다.

Sentiment Analysis of Korean Sentences using a Neural Network Model (신경망 모델을 활용한 한국어 감성분석)

  • Kim, Dong-Hyeon;Kim, Tae-Yeong;Kim, Hyo-Jeong;Moon, Yoo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.7-8
    • /
    • 2022
  • 본 연구에서는 한국어 SNS 대화에서 나타나는 문장들의 감성을 분석하고자 신경망 모델을 활용하여 시스템을 구축하였다. 현재 해외 SNS 감성분석에 대한 연구는 많이 진행된 상황이지만, 한국어 범용 대화에 대해 적절한 모델이 무엇인지는 연구가 부족한 실정이었다. 따라서 한국어 대화에 적합한 모델을 채택해 보다 정확한 감성분석을 수행하였다. 이를 위해 한국어 SNS 대화 데이터에 대해 신경망 모델을 적용하여, 82% 성공률로 기존 모델 72% 성공률보다 훨씬 더 우수한 성능을 보였다. 또한 본 연구의 결과는 악플 추적 등 실용적인 분야에도 기여할 수 있다고 사료된다.

  • PDF

Data Augmentation of English Reading Comprehension Tutoring Dialogs using ChatGPT (ChatGPT 를 이용한 독해 튜터링 대화 데이터 확장)

  • Hyunyou Kwon;Sung-Kwon Choi;Jinxia Huang;Oh-Woog Kwon
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • 대화형 독해 튜터링 시스템을 위한 학생주도 대화 데이터셋 생성 및 확장에 ChatGPT 의 활용 가능성을 평가하였다. 단순히 수동으로만 구축한 기존의 데이터셋과 ChatGPT 에 의해 반자동으로 확장된 데이터셋을 비교한 결과, 구축량, 소요 시간, 비용 및 반복 작업 측면에서 ChatGPT 가 가진 유용성을 알 수 있었다. 그러나, 유형별 배분의 편중과, 부적절한 데이터 생성 등의 한계도 나타났다. Chat GPT 의 빠른 발전이 예상됨에 따라 대화형 튜터링 분야에 ChatGPT 에 의한 반자동 데이터 확장 방법이 널리 활용될 것으로 기대된다.

Bringing Characters to Life: AI Chatbot (캐릭터를 현실로: AI 챗봇)

  • Junghye Min;Sang-Hun Kim;Ji-Min Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.25-27
    • /
    • 2023
  • 본 논문에서는 캐릭터 챗봇을 학습시키고, 학습된 모델을 React 기반 웹 페이지에 통합하는 것을 목표로 한다. 웹 페이지 사용자들은 실시간으로 게임이나 영화 캐릭터와 대화할 수 있는 기능을 제공받게 된다. 캐릭터 챗봇은 사용자의 질문을 이해하고 학습된 캐릭터의 특성에 따라 적절한 응답을 생성함으로써 상호작용하게 된다. 사용자가 웹 페이지에서 입력한 질문이나 요청은 챗봇 모델을 통해 처리되며, AI 챗봇은 학습된 지식과 데이터를 활용하여 응답을 생성한다. 사용자는 웹 페이지에서 자연스러운 대화를 통해 원하는 캐릭터와 대화를 이어갈 수 있게 된다.

  • PDF

Multi Agent Multi Action system for AI care service for elderly living alone based on radar sensor (레이더 센서 기반 독거노인 AI 돌봄 서비스를 위한 다중 에이전트 다중 액션 시스템)

  • Chae-Byeol Lee;Kwon-Taeg Choi;Jung-HO Ahn;Kyu-Chang Jang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.67-68
    • /
    • 2023
  • 본 논문에서 제안한 Multi Agent Multi Action은 기존의 대화형 시스템 방식인 Single Agent Single Action 구조에 비해 확장성을 갖춘 대화 시스템을 구현하는 방식이다. 시스템을 여러 에이전트로 분할하고, 각 에이전트가 특정 액션에 대한 처리를 담당함으로써 보다 유연하고 효율적인 대화형 시스템을 구현할 수 있으며, 다양한 작업에 특화된 에이전트를 그룹화함으로써 작업의 효율성을 극대화하고, 사용자 경험을 향상 시킬 수 있다.

  • PDF

Conversation Dataset Generation and Improve Search Performance via Large Language Model (Large Language Model을 통한 대화 데이터셋 자동 생성 및 검색 성능 향상)

  • Hyeongjun Choi;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.295-300
    • /
    • 2023
  • 대화 데이터와 같은 데이터는 사람이 수작업으로 작성해야 하기 때문에 데이터셋 구축에 시간과 비용이 크게 발생한다. 현재 대두되고 있는 Large Language Model은 이러한 대화 생성에서 보다 자연스러운 대화 생성이 가능하다는 이점이 존재한다. 이번 연구에서는 LLM을 통해 사람이 만든 적은 양의 데이터셋을 Fine-tuning 하여 위키백과 문서로부터 데이터셋을 만들어내고, 이를 통해 문서 검색 모델의 성능을 향상시켰다. 그 결과 학습 데이터와 같은 문서집합에서 MRR 3.7%p, 위키백과 전체에서 MRR 4.5%p의 성능 향상을 확인했다.

  • PDF

LLaMA2 Models with Feedback for Improving Document-Grounded Dialogue System (피드백 기법을 이용한 LLama2 모델 기반의 Zero-Shot 문서 그라운딩된 대화 시스템 성능 개선)

  • Min-Kyo Jung;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.275-280
    • /
    • 2023
  • 문서 그라운딩된 대화 시스템의 응답 성능 개선을 위한 방법론을 제안한다. 사전 학습된 거대 언어 모델 LLM(Large Language Model)인 Llama2 모델에 Zero-Shot In-Context learning을 적용하여 대화 마지막 유저 질문에 대한 응답을 생성하는 태스크를 수행하였다. 본 연구에서 제안한 응답 생성은 검색된 top-1 문서와 대화 기록을 참조해 초기 응답을 생성하고, 생성된 초기 응답을 기반으로 검색된 문서를 대상으로 재순위화를 수행한다. 이 후, 특정 순위의 상위 문서들을 이용해 최종 응답을 생성하는 과정으로 이루어진다. 검색된 상위 문서를 이용하는 응답 생성 방식을 Baseline으로 하여 본 연구에서 제안한 방식과 비교하였다. 그 결과, 본 연구에서 제안한 방식이 검색된 결과에 기반한 실험에서 Baseline 보다 F1, Bleu, Rouge, Meteor Score가 향상한 것을 확인 하였다.

  • PDF