• 제목/요약/키워드: {\omega}$ Model

검색결과 482건 처리시간 0.026초

Review of Operational Multi-Scale Environment Model with Grid Adaptivity

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_1호
    • /
    • pp.23-28
    • /
    • 2001
  • A new numerical weather prediction and dispersion model, the Operational Multi-scale Environment model with Grid Adaptivity(OMEGA) including an embedded Atmospheric Dispersion Model(ADM), is introduced as a next generation atmospheric simulation system for real-time hazard predictions, such as severe weather or the transport of hazardous release. OMEGA is based on an unstructured grid that can facilitate a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from 20 -30 meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning and time. In particular, the unstructured grid cells in the horizontal dimension can increase the local resolution to better capture the topography or important physical features of the atmospheric circulation and cloud dynamics. This means the OMEGA can readily adapt its grid to a stationary surface, terrain features, or dynamic features in an evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with observed data.

  • PDF

표면 거칠기 효과를 고려한 2-방정식 난류 모델의 성능평가 (Evaluation of Two-Equation Turbulence Models with Surface Roughness Effect)

  • 윤준용;천정민;강승규;변성준
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1681-1690
    • /
    • 2003
  • The effect of roughness is a change in the velocity and turbulence distributions near the surface. Turbulence models with surface roughness effect are applied to the fully developed flow in a two-dimensional, rough wall channel. Modified wall function model, low-Reynolds number k-$\varepsilon$ model, and k-$\omega$ model are selected for comparison. In order to make a fair comparison, the calculation results are compared with the experimental data. The modified wall function model and the low-Reynolds number k-$\varepsilon$ model require further refinement, while the k-$\omega$ model of Wilcox performs remarkably well over a wide range of roughness values.

Verification of a tree canopy model and an example of its application in wind environment optimization

  • Yang, Yi;Xie, Zhuangning;Tse, Tim K.T.;Jin, Xinyang;Gu, Ming
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.409-421
    • /
    • 2012
  • In this paper, the method of introducing additional source/sink terms in the turbulence and momentum transport equations was applied to appropriately model the effect of the tree canopy. At first, the new additional source term for the turbulence frequency ${\omega}$ equation in the SST k-${\omega}$ model was proposed through theoretical analogy. Then the new source/sink term model for the SST k-${\omega}$ model was numerically verified. At last, the proposed source term model was adopted in the wind environment optimal design of the twin high-rise buildings of CABR (China Academy of Building Research). Based on the numerical simulations, the technical measure to ameliorate the wind environment was proposed. Using the new inflow boundary conditions developed in the previous studies, it was concluded that the theoretically reasonable source term model of the SST k-${\omega}$ model was applicable for modeling the tree canopy flow and accurate numerical results are obtained.

이중시간전진법과 k-$\omega$ 난류모델을 이용한 익렬 내부 비정상 유동해석 (Unsteady cascade flow calculations of using dual time stepping and the k-$\omega$ turbulence model)

  • 최창호;유정열
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1624-1634
    • /
    • 1997
  • A numerical study on two-dimensional unsteady transonic cascade flow has been performed by adopting dual time stepping and the k-.omega. turbulence model. An explicit 4 stage Runge-Kutta scheme for the compressible Navier-Stokes equations and an implicit Gauss-Seidel iteration scheme for the k-.omega. turbulence model are proposed for fictitious time stepping. This mixed time stepping scheme ensures the stability of numerical computation and exhibits a good convergence property with less computation time. Typical steady-state convergence accelerating schemes such as local time stepping, residual smoothing and multigrid combined with dual time stepping shows good convergence properties. Numerical results are presented for unsteady laminar flow past a cylinder and turbulent shock buffeting problem for bicircular arc cascade flow is discussed.

초음속 유동 해석을 위한 Wilcox к - ω 난류 모델 비교 (Comparison between Wilcox к - ω turbulence models for supersonic flows)

  • 김민하
    • 한국항공우주학회지
    • /
    • 제40권5호
    • /
    • pp.375-384
    • /
    • 2012
  • 본 연구에서는 초음속 비행체에 나타나는 유동 특성 해석을 위해 1988 Wilcox $\mathcal{k}-{\omega}$ 모델과 2008 Wilcox 모델의 수치 결과를 비교하였다. 충격파 - 경계층 간섭 현상과 램프 주입기 혼합 문제에 대하여 실험결과와 비교, 검토하였다. 또한, 표면 마찰 측정의 기초가 되는 평판 흐름과 전단 층 성장에 대한 상관 관계식도 비교, 분석 하였다. 램프 주입기 케이스에서 최대 주입 질량비는 1988 Wilcox 모델을 이용하였을 때 보다 신뢰성 있는 해석 결과를 예측할 수 있었다. 그러나 충격파 - 경계층 간섭 케이스에 대해서는 2008 Wilcox 모델을 적용하였을 때 더 정확한 해석 결과가 도출됨을 확인하였다.

섬진강 월유출량의 추계학적 모형 (Stochastic Modelling of Monthly flows for Somjin river)

  • 이종남;이홍근
    • 물과 미래
    • /
    • 제17권4호
    • /
    • pp.281-291
    • /
    • 1984
  • 한국하천유역의 강우량관측자료는 풍부하나 하천유량측정자료가 많고 섬진강 유역내의 압록과 송정의 유량관측기록이 비교적장기간에 것이 있고, 유속측정을 많이 하고 있으므로 본유역자료를 가지고 월유출량계열의 모형식을 유도하였다. 본모형식은 월강우량기록으로서 월유출량 산출식을 Box & Jenkins의 대체함수모형식에다 ARIMA의 잔차모형식을 가하여 유도한 것이다. 또 기 강우량과 유출량 자료간에는 잔차시계열이 정상공분산을 갖는다는 가정하에 모형식을 작성하였다. 자기상관 함수의 특성으로부터 ARIMA모형을 유도함에도 먼저 계산식으로 각변수를 산출하고, 이 변수를 다소조정반복시켜 가장 정확한 융통성있는 Box & Jenkins 방식의 모형식을 작성하였다. 섬진강에서 가장 적정모형식을 다음과 같은 일반식으로 주어졌다. 여기서 $Y_t=($\omega$o-$\omega$_1B) C_iX_t+$\varepsilon$t$ $Y_t$ 월유출량, $X_t$: 월 강우량, $C_i$: 월유출률, $$\omega$o-$\omega$_1$ : 대체변수 $$\varepsilon$_t$ : 잔차(임의오차성분) 섬진강수위관측소의 기 월유출량 기록자료로서 월유출량게열의 만족할만한 모형을 비교검토 연구작성하였다.

  • PDF

THE NON-EXISTENCE AND EXISTENCE OF POSITIVE SOLUTION TO THE COOPERATION MODEL WITH GENERAL COOPERATION RATES

  • Kang, Joon Hyuk;Lee, Jungho
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.259-269
    • /
    • 2008
  • The non-existence and existence of the positive solution for the generalized cooperation biological model for two species of animals $${\Delta}u+u(a-bu+g(v))=0\;in\;{\Omega}\\{\Delta}v+v(d+h(u)-cv)=0\;in\;{\Omega}\\u=v=0\;on\;{\partial}{\Omega}$$ are investigated. The techniques used in this paper are elliptic theory, upper-lower solutions, maximum principles and spectrum estimates. The arguments also rely on some detailed properties for the solution of logistic equations.

  • PDF

저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석 (Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model)

  • 최창호;유정열
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

2차원 아음속 압축기 익렬유동에서의 난류모델 효과에 관한 연구 (Study on the effect turbulence models for the flow through a subsonic compressor cascade)

  • 남경우;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.51-57
    • /
    • 2001
  • The eddy viscosity turbulence models were applied to predict the flows through a cascade, and the prediction performances of turbulence models were assessed by comparing with the experimental results for a controlled diffusion(CD) compressor blade. The original $\kappa-\omega$ turbulence model and $\kappa-\omega$ shear stress transport(SST) turbulence model were used as two-equation turbulence model which were enhanced for a low Reynolds number flow and the Baldwin-Lomax turbulence model was used as algebraic turbulence model. Farve averaged Wavier-Stokes equations in a two-dimensional, curvilinear coordinate system were solved by an implicit, cell-centered finite-volume computer code. The turbulence quantities are obtained by lagging when the men flow equations have been updated. The numerical analysis was made to the flows of CD compressor blade in a cascade at three different incidence angles (40. 43.4. 46 degrees). We found the reversion in the prediction performance of original $\kappa-\omega$ turbulence model and $\kappa-\omega$ SST turbulence model when the incidence angie increased. And the algebraic Baldwin-Lomax turbulence model showed inferiority to two-equation turbulence models.

  • PDF

Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model

  • Hu, Peng;Li, Yongle;Cai, C.S.;Liao, Haili;Xu, G.J.
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.87-105
    • /
    • 2013
  • Modeling an equilibrium atmospheric boundary layer (ABL) in an empty computational domain has routinely been performed with the k-${\varepsilon}$ turbulence model. However, the research objects of structural wind engineering are bluff bodies, and the SST k-${\omega}$ turbulence model is more widely used in the numerical simulation of flow around bluff bodies than the k-${\varepsilon}$ turbulence model. Therefore, to simulate an equilibrium ABL based on the SST k-${\omega}$ turbulence model, the inlet profiles of the mean wind speed U, turbulence kinetic energy k, and specific dissipation rate ${\omega}$ are proposed, and the source terms for the U, k and ${\omega}$ are derived by satisfying their corresponding transport equations. Based on the proposed inlet profiles, numerical comparative studies with and without considering the source terms are carried out in an empty computational domain, and an actual numerical simulation with a trapezoidal hill is further conducted. It shows that when the source terms are considered, the profiles of U, k and ${\omega}$ are all maintained well along the empty computational domain and the accuracy of the actual numerical simulation is greatly improved. The present study could provide a new methodology for modeling the equilibrium ABL problem and for further CFD simulations with practical value.