DOI QR코드

DOI QR Code

Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model

  • Hu, Peng (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Li, Yongle (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Cai, C.S. (Department of Civil and Environmental Engineering, Louisiana State University) ;
  • Liao, Haili (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Xu, G.J. (Department of Civil and Environmental Engineering, Louisiana State University)
  • Received : 2012.05.24
  • Accepted : 2012.10.07
  • Published : 2013.07.25

Abstract

Modeling an equilibrium atmospheric boundary layer (ABL) in an empty computational domain has routinely been performed with the k-${\varepsilon}$ turbulence model. However, the research objects of structural wind engineering are bluff bodies, and the SST k-${\omega}$ turbulence model is more widely used in the numerical simulation of flow around bluff bodies than the k-${\varepsilon}$ turbulence model. Therefore, to simulate an equilibrium ABL based on the SST k-${\omega}$ turbulence model, the inlet profiles of the mean wind speed U, turbulence kinetic energy k, and specific dissipation rate ${\omega}$ are proposed, and the source terms for the U, k and ${\omega}$ are derived by satisfying their corresponding transport equations. Based on the proposed inlet profiles, numerical comparative studies with and without considering the source terms are carried out in an empty computational domain, and an actual numerical simulation with a trapezoidal hill is further conducted. It shows that when the source terms are considered, the profiles of U, k and ${\omega}$ are all maintained well along the empty computational domain and the accuracy of the actual numerical simulation is greatly improved. The present study could provide a new methodology for modeling the equilibrium ABL problem and for further CFD simulations with practical value.

Keywords

References

  1. Blocken, B., Carmeliet, J. and Stathopoulos, T. (2007a), "CFD evaluation of wind speed conditions in passages between parallel buildings-effect of wall-function roughness modifications for the atmospheric boundary layer flow", J. Wind Eng. Ind. Aerod., 95 (9-11), 941-962. https://doi.org/10.1016/j.jweia.2007.01.013
  2. Blocken, B., Janssen, W.D. and van Hooff, T. (2012), "CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus", Environ. Modell. Softw., 30, 15-34. https://doi.org/10.1016/j.envsoft.2011.11.009
  3. Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007b), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41 (2), 238- 252. https://doi.org/10.1016/j.atmosenv.2006.08.019
  4. Cao, S., Wang, T., Ge, Y. and Tamura, Y. (2012), "Numerical study on turbulent boundary layers over two-dimensional hills—Effects of surface roughness and slope", J. Wind Eng. Ind. Aerod., 104-106, 342-349. https://doi.org/10.1016/j.jweia.2012.02.022
  5. Counihan, J. (1975), "Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880-1972", Atmos. Environ., 9(10), 871- 905. https://doi.org/10.1016/0004-6981(75)90088-8
  6. EI-Behery, S.M. and Hamed, M.H. (2011), "A comparative study of turbulence models performance for separating flow in a planar asymmetric diffuser", Comput. Fluids, 44(1), 248-257. https://doi.org/10.1016/j.compfluid.2011.01.009
  7. Fluent Inc. (2006), Fluent 6.3 User's Guide, Fluent Inc., Lebanon, New Hampshire.
  8. Franke, J., Hellsten, A., Schlünzen, H. and Carissimo, B. (2007), Best practice guideline for the CFD simulation of flows in the urban environment, COST Office, Brussels.
  9. Gao, Y. and Chow, W.K. (2005), "Numerical studies on air flow around a cube", J. Wind Eng. Ind. Aerod., 93(2), 115-135. https://doi.org/10.1016/j.jweia.2004.11.001
  10. Gorlé, C., van Beeck, J., Rambaud, P. and van Tendeloo, G. (2009), "CFD modelling of small particle dispersion: the influence of the turbulence kinetic energy in the atmospheric boundary layer", Atmos. Environ., 43(3), 673-681. https://doi.org/10.1016/j.atmosenv.2008.09.060
  11. Hargreaves, D.M. and Wright, N.G. (2007), "On the use of the k-$\varepsilon$ model in commercial CFD software to model the neutral atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 95(5), 355-369. https://doi.org/10.1016/j.jweia.2006.08.002
  12. Kim, H.G., Patel, V.C. and Lee, C.M. (2000), "Numerical simulation of wind flow over hilly terrain", J. Wind Eng. Ind. Aerod., 87(1), 45-60. https://doi.org/10.1016/S0167-6105(00)00014-3
  13. Lakehal, D. (1998), "Application of the k-$\varepsilon$ model to flow over a building placed in different roughness sublayers", J. Wind Eng. Ind. Aerod., 73(1), 59-77. https://doi.org/10.1016/S0167-6105(97)00279-1
  14. Launder, B.E. and Spalding, D.B. (1972), Lectures in mathematical models of turbulence. Academic Press, London, England.
  15. Loureiro, J.B.R., Alho, A.T.P. and Silva Freire, A.P. (2008), "The numerical computation of near-wall turbulent flow over a steep hill", J. Wind Eng. Ind. Aerod., 96(5), 540-561. https://doi.org/10.1016/j.jweia.2008.01.011
  16. Maurizi, A., Palma, J.M.L.M. and Castro, F.A. (1998), "Numerical simulation of the atmospheric flow in a mountainous region of the North of Portugal", J. Wind Eng. Ind. Aerod., 74-76, 219-228. https://doi.org/10.1016/S0167-6105(98)00019-1
  17. Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149
  18. Morrison, J.F. (2007), "The interaction between inner and outer regions of turbulent wall-bounded flow", Philos. T. R. Soc. A., 365, 683-698. https://doi.org/10.1098/rsta.2006.1947
  19. Parente, A., Gorle, C., van Beeck, J. and Benocci, C. (2011),"Improved $k-{\varepsilon}$ model and wall function formulation for the RANS simulation of ABL flows", J. Wind Eng. Ind. Aerod., 99(4), 267-278. https://doi.org/10.1016/j.jweia.2010.12.017
  20. Ramponi, R. and Blocken, B. (2012), "CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters", Build. Environ., 53, 34-48. https://doi.org/10.1016/j.buildenv.2012.01.004
  21. Richards, P.J. and Hoxey, R.P. (1993), "Appropriate boundary conditions for computational wind engineering models using the $k-{\varepsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 46-47, 145-153. https://doi.org/10.1016/0167-6105(93)90124-7
  22. Richards, P.J. and Norris, S.E. (2011), "Appropriate boundary conditions for computational wind engineering models revisited", J. Wind Eng. Ind. Aerod., 99(4), 257-266. https://doi.org/10.1016/j.jweia.2010.12.008
  23. Riddle, A., Carruthers D., Sharpe, A., Mchugh, C. and Stocker, J. (2004), "Comparisons between FLUENT and ADMS for atmospheric dispersion modelling", Atmos. Environ., 38(7), 1029-1038. https://doi.org/10.1016/j.atmosenv.2003.10.052
  24. Shiau, B.S. and Hsu, S.C. (2003), "Measurement of the Reynolds stress structure and turbulence characteristics of the wind above a two-dimensional trapezoidal shape of hill", J. Wind Eng. Ind. Aerod., 91(10), 1237-1251. https://doi.org/10.1016/S0167-6105(03)00075-8
  25. Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures: fundamentals and applications to design, 3rd Ed., John Wiley, New York.
  26. Wilcox, D.C. (1998), Turbulence modeling for CFD. DCW Industries, La Canada, California.
  27. Yamaguchi, A., Ishihara, T. and Fujino, Y. (2003), "Experimental study of the wind flow in a coastal region of Japan", J. Wind Eng. Ind. Aerod., 91(1-2), 247-264. https://doi.org/10.1016/S0167-6105(02)00349-5
  28. Yang, W., Quan, Y., Jin, X., Tamura, Y. and Gu, M. (2008), "Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise building", J. Wind Eng. Ind. Aerod., 96(10-11), 2080-2092. https://doi.org/10.1016/j.jweia.2008.02.014
  29. Yang, Y., Gu, M., Chen, S. and Jin, X. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001

Cited by

  1. Investigation of the longitudinal wind power spectra at the gorge terrain vol.20, pp.11, 2017, https://doi.org/10.1177/1369433217693632
  2. Numerical Simulation of Wind Fields at the Bridge Site in Mountain-Gorge Terrain Considering an Updated Curved Boundary Transition Section vol.31, pp.3, 2018, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000830
  3. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses vol.175, 2018, https://doi.org/10.1016/j.atmosenv.2017.12.001
  4. Computational modeling of the atmospheric boundary layer using various two-equation turbulence models vol.19, pp.6, 2014, https://doi.org/10.12989/was.2014.19.6.687
  5. Numerical simulations of the mean wind speeds and turbulence intensities over simplified gorges using the SST k-ω turbulence model vol.10, pp.1, 2016, https://doi.org/10.1080/19942060.2016.1169947
  6. Numerically Modeling the Effect of Flexibility on Flow around Marine Engineering Structures: Using the Shape of the Saguaro Cactus vol.36, pp.3, 2013, https://doi.org/10.2112/jcoastres-d-19-00115.1
  7. Effect of unsteady aerodynamic loads on driving safety and comfort of trains running on bridges vol.23, pp.13, 2013, https://doi.org/10.1177/1369433220924794
  8. Characteristics of Typhoon “Fung-Wong” Near Earth Pulsation vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/9972981