• 제목/요약/키워드: *-Noetherian domain

검색결과 39건 처리시간 0.02초

PRIME BASES OF WEAKLY PRIME SUBMODULES AND THE WEAK RADICAL OF SUBMODULES

  • Nikseresht, Ashkan;Azizi, Abdulrasool
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1183-1198
    • /
    • 2013
  • We will introduce and study the notion of prime bases for weakly prime submodules and utilize them to derive some formulas on the weak radical of submodules of a module. In particular, we will show that every one dimensional integral domain weakly satisfies the radical formula and state some necessary conditions on local integral domains which are semi-compatible or satisfy the radical formula and also on Noetherian rings which weakly satisfy the radical formula.

TIGHT CLOSURES AND INFINITE INTEGRAL EXTENSIONS

  • Moon, Myung-In;Cho, Young-Hyun
    • 대한수학회보
    • /
    • 제29권1호
    • /
    • pp.65-72
    • /
    • 1992
  • All rings are commutative, Noetherian with identity and of prime characteristic p, unless otherwise specified. First, we describe the definition of tight closure of an ideal and the properties about the tight closure used frequently. The technique used here for the tight closure was introduced by M. Hochster and C. Huneke [4,5, or 6]. Using the concepts of the tight closure and its properties, we will prove that if R is a complete local domain and F-rational, then R is Cohen-Macaulay. Next, we study the properties of R$^{+}$, the integral closure of a domain in an algebraic closure of its field of fractions. In fact, if R is a complete local domain of characteristic p>0, then R$^{+}$ is Cohen-Macaulay [8]. But we do not know this fact is true or not if the characteristic of R is zero. For the special case we can show that if R is a non-Cohen-Macaulay normal domain containing the rationals Q, then R$^{+}$ is not Cohen-Macaulay. Finally we will prove that if R is an excellent local domain of characteristic p and F-ratiional, then R is Cohen-Macaulay.aulay.

  • PDF

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq;Kim, Hwankoo;Mahdou, Najib
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1095-1106
    • /
    • 2020
  • The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.

Two Extensions of a Star Operation on D to the Polynomial Ring D[X]

  • Chang, Gyu Whan;Kim, Hwankoo
    • Kyungpook Mathematical Journal
    • /
    • 제61권1호
    • /
    • pp.23-32
    • /
    • 2021
  • Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗ (D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ∩P∈∗w-Max(D) ADP [X] and A[∗] = (∩P∈∗w-Max(D) AD[X]P[X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ≅ Cl[∗](D[X]) if and only if D is integrally closed.

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • 대한수학회지
    • /
    • 제53권6호
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.

SOME EXAMPLES OF WEAKLY FACTORIAL RINGS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제21권3호
    • /
    • pp.319-323
    • /
    • 2013
  • Let D be a principal ideal domain, X be an indeterminate over D, D[X] be the polynomial ring over D, and $R_n=D[X]/(X^n)$ for an integer $n{\geq}1$. Clearly, $R_n$ is a commutative Noetherian ring with identity, and hence each nonzero nonunit of $R_n$ can be written as a finite product of irreducible elements. In this paper, we show that every irreducible element of $R_n$ is a primary element, and thus every nonunit element of $R_n$ can be written as a finite product of primary elements.

SEMISIMPLE DIMENSION OF MODULES

  • Amirsardari, Bahram;Bagheri, Saeid
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.711-719
    • /
    • 2018
  • In this paper we define and study a new kind of dimension called, semisimple dimension, that measures how far a module is from being semisimple. Like other kinds of dimensions, this is an ordinal valued invariant. We give some interesting and useful properties of rings or modules which have semisimple dimension. It is shown that a noetherian module with semisimple dimension is an artinian module. A domain with semisimple dimension is a division ring. Also, for a semiprime right non-singular ring R, if its maximal right quotient ring has semisimple dimension as a right R-module, then R is a semisimple artinian ring. We also characterize rings whose modules have semisimple dimension. In fact, it is shown that all right R-modules have semisimple dimension if and only if the free right R-module ${\oplus}^{\infty}_{i=1}$ R has semisimple dimension, if and only if R is a semisimple artinian ring.

A NATURAL MAP ON AN ORE EXTENSION

  • Cho, Eun-Hee;Oh, Sei-Qwon
    • 충청수학회지
    • /
    • 제31권1호
    • /
    • pp.47-52
    • /
    • 2018
  • Let ${\delta}$ be a derivation in a noetherian integral domain A. It is shown that a natural map induces a homeomorphism between the spectrum of $A[z;{\delta}]$ and the Poisson spectrum of $A[z;{\delta}]_p$ such that its restriction to the primitive spectrum of $A[z;{\delta}]$ is also a homeomorphism onto the Poisson primitive spectrum of $A[z;{\delta}]_p$.

THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.379-395
    • /
    • 2018
  • Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.