References
- D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696. https://doi.org/10.1080/00927870701724177
- D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
- D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672. https://doi.org/10.1080/00927871003738998
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. https://doi.org/10.1017/S0004972700039344
- A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), no. 2, 441-452.
- A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals of commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173. https://doi.org/10.4134/BKMS.2014.51.4.1163
- A. Badawi, U. Tekir, and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015), no. 1, 97-111. https://doi.org/10.4134/JKMS.2015.52.1.097
- A. Yousefian Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14 (2015), 22 pages.
- A. Yousefian Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013), no. 1, 83-91. https://doi.org/10.1007/s00233-012-9417-z
- M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268-1279. https://doi.org/10.1080/00927872.2010.550794
- D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.
- M. D. Larson and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
- H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989.
- R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society Student Texts, 51, Cambridge University Press, Cambridge, 1990.
Cited by
- Rings in which every 2-absorbing ideal is prime pp.2191-0383, 2017, https://doi.org/10.1007/s13366-017-0366-2
- On a generalization of prime submodules of a module over a commutative ring vol.37, pp.1, 2019, https://doi.org/10.5269/bspm.v37i1.33962
- On 2-absorbing ideals of commutative semirings pp.1793-6829, 2020, https://doi.org/10.1142/S0219498820500346