References
- E.-H. Cho and S.-Q. Oh, Semiclassical limits of Ore extensions and a Poisson generalized Weyl algebra, Letters in Math. Phys. 106 (2016), no. 7, 997-1009.
- K. R. Goodearl and R. B. Warfield, An introduction to noncommutative noetherian rings, London Mathematical Society Student Text 16, Cambridge University Press, 1989.
- D. A. Jordan, Ore extensions and Poisson algebras, Glasgow Math. J. 56 (2014), no. 2, 355-368. https://doi.org/10.1017/S0017089513000293
- A. P. Kitchin and S. Launois, Endomorphisms of quantum generalized Weyl algebras, Letters in Math. Phys. 104 (2014), 837-848.
- N.-H. Myung and S.-Q. Oh, Automorphism groups of Weyl algebras, arXiv.org: [math.RA] (2017).
- S.-Q. Oh, Poisson polynomial rings, Comm. Algebra, 34 (2006), 1265-1277.
- S.-Q. Oh, Poisson prime ideals of Poisson polynomial rings, Comm. Algebra, 35 (2007), 3007-3012.
- S.-Q. Oh, Quantum and Poisson structures of multi-parameter symplectic and Euclidean spaces, J. Algebra, 319 (2008), 4485-4535.
- S.-Q. Oh, A natural map from a quantized space onto its semiclassical limit and a multi-parameter Poisson Weyl algebra, Comm. Algebra, 45 (2017), 60-75.
- S.-Q. Oh and M.-Y. Park, Relationship between quantum and Poisson structures of odd dimensional Euclidean spaces, Comm. Algebra, 38 (2010), no. 9, 3333-3346. https://doi.org/10.1080/00927870903114987