• 제목/요약/키워드: (s,S) Repair policy

검색결과 71건 처리시간 0.021초

무상수리 정책에서 응급수리 적용의 비용분석 모델 (Cost Analysis Model for Minimal Repair in Free-Replacement Policy)

  • 김재중;김원중
    • 산업경영시스템학회지
    • /
    • 제20권43호
    • /
    • pp.241-247
    • /
    • 1997
  • This paper is concerned with cost analysis model in free-replacement policy. The free-replacement policy with minimal repair is considered as follows; in a manufacturer's view point operating unit is periodically replaced, if a failure occurs between minimal repair and periodic maintenance time, unit is remained in a failure condition. Also unit undergoes minimal repair at failures in minimal-repair interval. Then total expected cost is calculated according to the parameter of failure distribution in a view of consumer's. The expected costs are included repair cost and usage cost: operating, fixed, minimal repair and loss cost. Numerical example is shown in which failure time of item has weibull distribution.

  • PDF

정기보전제도에서 응급수리제품에 대한 무상수리 적용의 비용분석 모델 (A Cost Analysis Model of Minimal-Repairable Items in Free Replacement under the Periodic Maintenance Policy)

  • 김재중;김원중;조남호
    • 산업경영시스템학회지
    • /
    • 제19권39호
    • /
    • pp.89-98
    • /
    • 1996
  • This paper is concerned with cost analysis model in free -replacement policy under the periodic maintenance policy The free-replacement policy with minimal repairable item is considered as follows; in a manufacturer's view point operating unit is periodically replaced, if a failure occurs between minimal repair and periodic maintenance time, unit is remained in a failure condition. Also unit undergoes minimal repair at failures in minimal-repair interval. Then total expected cost per unit time is calculated according to maintenance period Tin a viewpoint of consumer's. The expected costs are included repair cost and usage cost: operating, fixed, minimal repair and loss cost. Numerical example is shown in which failure time of item has beta distribution.

  • PDF

정기보전 제도에서 응급수리를 고려한 대체품 수리정책에서의 비용분석 모델 (Cost Analysis Model with Minimal Repair of Spare Unit Repair Policy under Periodic Maintenance Policy)

  • 김재중
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권2호
    • /
    • pp.151-161
    • /
    • 2006
  • This article is concerned with cost analysis model in periodic maintenance policy. The repair policy is differently applied according as unit importance during an item being used and unit restoration during an item being failed. So in this paper the repair policy with minimal repair is considered as follow : as the occurrence of failure between minimal repair and periodic interval time, unit is replaced by a spare unit until the periodic maintenance time arrived. Then total expected cost per unit time is calculated according to scale parameter of failure distribution in a view of customer's. The total expected costs are included repair and usage cost : operating, fixed, minimal repair, periodic maintenance and spare unit cost. Numerical example is shown in which failure time of item has Erlang distribution.

  • PDF

Optimal replacement strategy under repair warranty with age-dependent minimal repair cost

  • Jung, K.M.
    • International Journal of Reliability and Applications
    • /
    • 제12권2호
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, we suggest the optimal replacement policy following the expiration of repair warranty when the cost of minimal repair depends on the age of system. To do so, we first explain the replacement model under repair warranty. And then the optimal replacement policy following the expiration of repair warranty is discussed from the user's point of view. The criterion used to determine the optimality of the replacement model is the expected cost rate per unit time, which is obtained from the expected cycle length and the expected total cost for our replacement model. The numerical examples are given for illustrative purpose.

  • PDF

정기보전 제도에서 응급수리를 고려한 신제품 수리정책에서의 비용분석 모델 (Cost Analysis Model with Minimal Repair of New Unit Repair Policy under Periodic Maintenance Policy)

  • 김재중
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권3호
    • /
    • pp.195-203
    • /
    • 2006
  • This paper deals with cost analysis model in periodic maintenance policy. The repair policy with minimal repair is considered as follow : as the occurrence of failure between minimal repair and periodic interval time, unit is replaced by a new unit before the periodic maintenance time comes. Then total expected cost per unit time is calculated according to time delta t in a view of customer's. The total expected costs are included repair and usage cost : operating, fixed, minimal repair, periodic maintenance and new unit expected cost. Numerical example is shown in which failure time of item has Normal distribution.

  • PDF

단계별 보증제도에서 응급수리 모형에 관한 보증비용 분석 (Cost analysis for minimal repair model in stepdown warranty policy)

  • 김재중;김원중
    • 산업경영시스템학회지
    • /
    • 제16권27호
    • /
    • pp.21-25
    • /
    • 1993
  • This article is concerned with cost analysis in stepdown warranty policy. The repair of item is divided into two policies. First, perfect repair can be considered that the failurerate is the same as new item. Second, minimal repair is shown that the failurerate is the same as just before the item failure In this paper, the minimal repair model is introduced. And it is assumed that manufacturers repair the item failure within the warranty periodn. But warranty period is not renewed at all. At this point the warranty cost is analyzed in manufacturer's and customer's point of view.

  • PDF

A Model for a Continuous State System with (s,S) Repair Policy

  • Park, Won-J.;Kim, Eui-Yong;Kim, Hong-Gie
    • Journal of the Korean Statistical Society
    • /
    • 제25권1호
    • /
    • pp.111-122
    • /
    • 1996
  • A model for a system whose state changes continuously with time is introduced. It is assumed that the system is modeled by a Brownian motion with negative drift and an absorbing barrier at the origin. A repairman arrives according to a Poisson process and repairs the system according to an (s,S) policy, i.e., he increases the state of the system up to S if and only if the state is below s. A partial differential equation is derived for the distribution function of X(t), the state of the system at time t, and the Laplace-Stieltjes transform of the distribution function is obtained by solving the partial differential equation. For the stationary case the explicit expression is deduced for the distribution function of the stationary state of the system.

  • PDF

Periodic Replacement Policies with Minimal Repair Cost Limit

  • Yun, W.Y.;Bai, D.S.
    • 대한산업공학회지
    • /
    • 제11권1호
    • /
    • pp.3-10
    • /
    • 1985
  • Periodic replacement policies are proposed for a system whose repair cost, when it fails, can be estimated by inspection. The system is replaced when it reaches age T (Policy A), or when it fails for the first time after age T (Policy B). If it fails before reaching age T, the repair cost is estimated and minimal repair is then undertaken if the estimated cost is less than a predetermined limit L; otherwise, the system is replaced. The expected cost rate functions are obtained, their behaviors are examined, and ways of obtaining optimal T and L are explored.

  • PDF

An Opportunity-based Age Replacement Policy with Warranty Analysed by Using TTT-Transforms

  • Iskandar, Bermawi P.;Klefsjo, Bengt;Sandoh, Hiroaki
    • International Journal of Reliability and Applications
    • /
    • 제1권1호
    • /
    • pp.27-38
    • /
    • 2000
  • In a recent paper Iskandar & Sandoh (1999) studied an opportunity-based age replacement policy for a system which has a warranty period (0,S]. When the system fails at age x $\leq$ S a minimal repair is performed. If an opportunity occurs to the system at age x, S $\leq$ x $\leq$ T, we take the opportunity with probability p to preventively replace the system, while we conduct a corrective .replacement when its fails in (S,T). Finally, if its age reaches T, we perform a preventive replacement, Under this policy the design variable is T. For the case when opportunities occur according to a homogeneous Poisson process, the long-run average cost of this policy was formulated and studied analytically by Iskandar & Sandoh (1999). The same problem is here analysed by using a graphical technique based on scaled TTT-transforms. This technique gives, among other things, excellent possibilities for different types of sensitivity analysis. We also extend the discussion to the situation when we have to estimate T based on times to failure.

  • PDF

교체-수리보증 하에서 연장된 보증이 종료된 이후의 예방보전정책 (Preventive Maintenance Policy Following the Expiration of Extended Warranty Under Replacement-Repair Warranty)

  • 정기문
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권2호
    • /
    • pp.122-128
    • /
    • 2014
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of extended warranty under replacement-repair warranty. Under the replacement-repair warranty, the failed system is replaced or minimally repaired by the manufacturer at no cost to the user. Also, under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective. And then we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.