• 제목/요약/키워드: (commutative) Hilbert algebra

검색결과 13건 처리시간 0.02초

UNITARY INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Yong-Soo;Kang, Joo-Ho
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.207-213
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n-vectors satisfies the equation Ax$_{i}$=y$_{i}$. for i=1,2, …, n. In this article, we investigate unitary interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H. Let x and y be vectors in H. When does there exist a unitary operator A in AlgL such that Ax=y?

INVERTIBLE INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.359-365
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. In this article, we investigate invertible interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H and x and y be vectors in H. When does there exist an invertible operator A in AlgL suth that An = ㅛ?

THE CONSTRUCTION OF A NON-UNIMODAL GORENSTEIN SEQUENCE

  • Ahn, Jea-Man
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.443-450
    • /
    • 2011
  • In this paper, we construct a Gorenstein Artinian algebra R/J with non-unimodal Hilbert function h = (1, 13, 12, 13, 1) to investigate the algebraic structure of the ideal J in a polynomial ring R. For this purpose, we use a software system Macaulay 2, which is devoted to supporting research in algebraic geometry and commutative algebra.

FUZZY ABYSMS OF HILBERT ALGEBRAS

  • Jun, Young-Bae;Lee, Kyoung-Ja;Park, Chul-Hwan
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권4호
    • /
    • pp.377-385
    • /
    • 2008
  • The notion of fuzzy abysms in Hilbert algebras is introduced, and several properties are investigated. Relations between fuzzy subalgebra, fuzzy deductive systems, and fuzzy abysms are considered.

  • PDF

THE SPHERICAL NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon;Oh, Sei-Qwon;Park, Chun-Gil
    • 대한수학회지
    • /
    • 제35권2호
    • /
    • pp.331-340
    • /
    • 1998
  • We define the spherical non-commutative torus $L_{\omega}$/ as the crossed product obtained by an iteration of l crossed products by actions of, the first action on C( $S^{2n+l}$). Assume the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus $A_{p}$ with a matrix algebra $M_{m}$ ( ) (m > 1). We prove that $L_{\omega}$/ $M_{p}$ (C) is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{mp}$ (C), and that the tensor product of $L_{\omega}$/ with a UHF-algebra $M_{p{\infty}}$ of type $p^{\infty}$ is isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) $M_{p{\infty}}$ if and only if the set of prime factors of m is a subset of the set of prime factors of p. Furthermore, it is shown that the tensor product of $L_{\omega}$/, with the C*-algebra K(H) of compact operators on a separable Hilbert space H is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) K(H) if Prim( $L_{\omega}$/) is homeomorphic to $L^{k}$ (n)$\times$ $T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.$T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.e.

  • PDF

ISOMORPHISMS OF A(3) ∞(i,k)

  • Jo, Young-Soo;Kang, Joo-Ho;Cho, Kyu-Min
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.233-241
    • /
    • 1996
  • The study of non-self-adjoint operator algebras on Hilbert space was only beginned by W.B. Arveson[1] in 1974. Recently, such algebras have been found to be of use in physics, in electrical engineering, and in general systems theory. Of particular interest to mathematicians are reflexive algebras with commutative lattices of invariant subspaces.

  • PDF

SELF-ADJOINT INTERPOLATION ON Ax = y IN CSL-ALGEBRA ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.503-510
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.

UNITARY INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.431-436
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;:\;y_i,\;for\;i\;=\;1,\;2,\;{\cdots},\;n$. In this article, we obtained the following : $Let\;x\;=\;\{x_i\}\;and\;y=\{y_\}$ be two vectors in a separable complex Hilbert space H such that $x_i\;\neq\;0$ for all $i\;=\;1,\;2;\cdots$. Let L be a commutative subspace lattice on H. Then the following statements are equivalent. (1) $sup\;\{\frac{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}y\$\mid$}{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}x\$\mid$}\;:\;l\;\in\;\mathbb{N},\;\alpha_{\kappa}\;\in\;\mathbb{C}\;and\;E_{\kappa}\;\in\;L\}\;<\;\infty\;and\;$\mid$y_n\$\mid$x_n$\mid$^{-1}\;=\;1\;for\;all\;n\;=\;1,\;2,\;\cdots$. (2) There exists an operator A in AlgL such that Ax = y, A is a unitary operator and every E in L reduces, A, where AlgL is a tridiagonal algebra.

α-COMPLETELY POSITIVE MAPS ON LOCALLY C*-ALGEBRAS, KREIN MODULES AND RADON-NIKODÝM THEOREM

  • Heo, Jaeseong;Ji, Un Cig;Kim, Young Yi
    • 대한수학회지
    • /
    • 제50권1호
    • /
    • pp.61-80
    • /
    • 2013
  • In this paper, we study ${\alpha}$-completely positive maps between locally $C^*$-algebras. As a generalization of a completely positive map, an ${\alpha}$-completely positive map produces a Krein space with indefinite metric, which is useful for the study of massless or gauge fields. We construct a KSGNS type representation associated to an ${\alpha}$-completely positive map of a locally $C^*$-algebra on a Krein locally $C^*$-module. Using this construction, we establish the Radon-Nikod$\acute{y}$m type theorem for ${\alpha}$-completely positive maps on locally $C^*$-algebras. As an application, we study an extremal problem in the partially ordered cone of ${\alpha}$-completely positive maps on a locally $C^*$-algebra.