• Title/Summary/Keyword: (Multiple Access)

Search Result 2,404, Processing Time 0.036 seconds

Interference Pattern Analysis in the Optical CDMA system using the SCAE and SCAD (SCAE와 SCAD를 이용한 광 CDMA시스템에서 간섭패턴 분석)

  • Kang, Tae-Gu;Choi, Jae-Kyong;Park, Chan-Young;Choi, Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • We have analyzed optical matched filters considering the third order signals in the optical code division multiple access (CDMA) system based on optical series coupler access encoder (SCAE) and series coupler access decoder (SCAD). In previous studies, the performance evaluation of the optical CDMA system using SCAE and SCAD was not sufficiently accurate because they analyzed system performance only considering the first order signals. Since optical SCAE and SCAD intrinsically have high order signals of various patterns as the number of coupler increases, they change auto- and cross-correlation intensities. Thus, it is necessary to investigate properties of the third order signals so that we may analyze the exact performance of system. In this paper, we mathematically interpret the optical signals up to the third order, and analyzed the effects of th third order signals on auto- and cross-correlation intensities. In result, as ${\alpha}$(coupling coefficient) value increases, the intensity of the third order signals increases. It is found that the peak to side-lobe ratio considering the third order signals is degraded by 3.75 dB at N(coupler number)=5 and ${\alpha}$=0.5. Also if threshold value in receiver is set by main-lobe peak of the first order signals, it is found that the number of users in an optical CDMA system is limited because the intensity peak of side-lobes is raised by the third order signals.

  • PDF

Improvement of GPON MAC Protocol for IP TV Service (IPTV 서비스를 위한 GPON 핵심 MAC 기술 개발)

  • Lee, Seung-Kun;Jang, Jong-Wook;Bae, Moon-Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.51-54
    • /
    • 2008
  • PON(Passive Optical Network) is the promising technology applicable to TPS(Triple Play Service). To improve process the packet, MAC(Multiple Access Control) is the most important technology in the PON. The core of MAC is DBA(Dynamic Bandwidth Assignment), it classifies SR-DBA(Status Report DBA) and NSR-DBA(Non Status Report DBA). But GPON DBA is using BPON's DBA, so it's bad in network efficiency. This study develop BR(Borrow-Refund)-DBA for improve network efficiency and prompt process. For take the gauge of performance evaluation, estimate about throughput, fairness and queue delay in SR-DBA and NSR-DBA environment

  • PDF

Performance Evaluation of WCDMA with Multiple Access Interference in Mixed Service Environments (다중접속 간섭과 혼합서비스 환경에서 WCDMA 시스템의 성능분석)

  • 정연호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.45-49
    • /
    • 2001
  • Wideband code division multiple access (WCDMA) is the most widely adopted third generation air interface. The physical layer of the air interface is the main discussion topic during standardization processes. This paper aims to investigate the performance of uplink WCDMA over many conceivable transmission scenarios in realistic operating conditions. The focus of the study is placed on the performance under frequency selective fading channel conditions with multiple access interference (MAI) in mixed services environments. For the investigation, a simulator has been developed and it encompasses a variety of WCDMA air interface features. The results show that the performance is greatly affected by MAI and is further aggravated with the presence of frequency selective fading, thereby necessitating a suitable compensation measure.

  • PDF

The performance analysis for intercell interference reduction techniques in WiBro networks (와이브로 기반의 셀간 간섭 제거 기술 성능 분석)

  • Park Chi-Ho;Oh Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.104-112
    • /
    • 2006
  • In this thesis, we analyze performance related to reduction scheme of intercell interference causing serious problems in wiBro system. Frequency reusing factor(FUF) is 1 in WiBro system, and it means that a adjacent cell uses same frequency band. This channel environment raises intercell interference problem, which provokes serious problems related to system performance and channel capacity. Consequently, it affects deterioration in system performance as a whole. We analyze intercell interference when appling a various schemes such as (DCA)Dynamic Channel Allocation, CS(Channel Segregation), IMUFR(Interference Mitigation Using Frequency Reuse), IDMA(Interleave Division Multiple Access), IDMA(Interleave Division Multiple Access), FH-OFDM, CRSA(Conceptual Random Subcarrier Allocation), and HDD

TLDP: A New Broadcast Scheduling Scheme for Multiple Broadcast-Channel Environments (TLDP: 다중 방송 채널 환경을 위한 새로운 방송 스케쥴링 기법)

  • Kwon, Hyeok-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.63-72
    • /
    • 2011
  • Broadcast-based data dissemination has become a widely accepted approach of communication in the mobile computing environment. However, with a large set of data items, the expected delay of receiving a desired data increases due to the sequential nature of the broadcast channel. With the objective of minimizing this wait time, this paper explores the problem of data broadcast over multiple channels. In traditional approaches, data items are partitioned based on their access probabilities and allocated on multiple channels, assuming flat data scheduling per channel. If the data items allocated on the same channel are broadcast in different frequencies based on their access probabilities, the performance will be enhanced further. In this respect, this paper proposes a new broadcast scheduling scheme named two level dynamic programming(TLDP) which can reflect a variation of access probabilities among data items allocated on the same channel.

Evolutionary game theory-based power control for uplink NOMA

  • Riaz, Sidra;Kim, Jihwan;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2697-2710
    • /
    • 2018
  • Owing to the development of Internet of Things (IoT), the fifth-generation (5G) wireless communication is going to foresee a substantial increase of mobile traffic demand. Energy efficiency and spectral efficiency are the challenges in a 5G network. Non-orthogonal multiple access (NOMA) is a promising technique to increase the system efficiency by adaptive power control (PC) in a 5G network. This paper proposes an efficient PC scheme based on evolutionary game theory (EGT) model for uplink power-domain NOMA system. The proposed PC scheme allows users to adaptively adjusts their transmit power level in order to improve their payoffs or throughput which results in an increase of the system efficiency. In order to separate the user signals, a successive interference cancellation (SIC) receiver installed at the base station (BS) site. The simulation results demonstrate that the proposed EGT-based PC scheme outperforms the traditional game theory-based PC schemes and orthogonal multiple access (OMA) in terms of energy efficiency and spectral efficiency.

Constant Amplitude Multiple Access Channel Coding for Impulse Radio UWB Networks (임펄스 UWB 네트워크에서의 일정진폭 다중접속 채널코팅)

  • Kim, Tong-Sok;Kim, Yong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.42-47
    • /
    • 2008
  • In this article a novel constant amplitude precoding for impulse UWB system is proposed. According to IEEE 802.15.4a, impulse UWB can be used in indoor localization and sensor data transmission. Most USN(ubiquitous sensor networks) needs multiple access. However impulse UWB system has a limited capability to detect superpositioned signal induced by multiple access. To overcome this problem we have adopted the concept of CAMC(Constant Amplitude Multi-Code) deviced by Wada and Kim. The proposed system consists of systematic constant amplitude precoding and LDPC decoding. And this system shows a good BER performance in computer simulation.

Resource allocation in downlink SWIPT-based cooperative NOMA systems

  • Wang, Longqi;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.20-39
    • /
    • 2020
  • This paper considers a downlink multi-carrier cooperative non-orthogonal multiple access (NOMA) transmission, where no direct link exists between the far user and the base station (BS), and the communication between them only relies on the assist of the near user. Firstly, the BS sends a superimposed signal of the far and the near user to the near user, and then the near user adopts simultaneous wireless information and power transfer (SWIPT) to split the received superimposed signal into two portions for energy harvesting and information decoding respectively. Afterwards, the near user forwards the signal of the far user by utilizing the harvested energy. A minimum data is required to ensure the quality of service (QoS) of the far user. We jointly optimize power allocation, subcarrier allocation, time allocation, the power allocation (PA) coefficient and the power splitting (PS) ratio to maximize the number of data bits received at the near user under the energy causality constraint, the minimum data constraint and the transmission power constraint. The block-coordinate descent method and the Lagrange duality method are used to obtain a suboptimal solution of this optimization problem. In the final simulation results, the superiority of the proposed NOMA scheme is confirmed compared with the benchmark NOMA schemes and the orthogonal multiple access (OMA) scheme.

Non-Orthogonal Multiple Access (NOMA) to Enhance Capacity in 5G

  • Lim, Sungmook;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.38-43
    • /
    • 2015
  • Non-orthogonal multiple access (NOMA) where all users share the entire time and frequency resource has paid attention as one of the key technologies to enhance the spectral efficiency and the total throughput. Nevertheless, as the number of users and SIC error increase, the inter-user interference and the residual interference due to the SIC error also increase, resulting in performance degradation. In order to mitigate the performance degradation, we propose grouping-based NOMA system. In the proposed scheme, all users are divided into two groups based on the distance between the BS and each user, where one utilizes the first half of the bandwidth and the other utilizes the rest in the orthogonal manner. On the other hand, users in each group share the spectrum in the non-orthogonal manner. Grouping users can reduce both the inter-user interference and residual interference due to the SIC error, so it can outperform conventional NOMA system, especially in case that the number of users and the SIC error increase. Based on that, we also present the hybrid operation of the conventional and the proposed NOMA systems. In numerical results, the total throughput of the proposed NOMA systems is compared with that of the conventional NOMA systems with regard to the number of users and SIC error. It is confirmed that the proposed NOMA system outperforms the conventional NOMA system as the number of users and the SIC error increase.

Joint Hierarchical Modulation and Network Coding for Asymmetric Data Rate Transmission over Multiple-Access Relay Channel (다중 접속 릴레이 채널에서 비대칭 데이터 전송을 위한 계층 변조 및 네트워크 코딩 결합 기법)

  • You, Dongho;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.747-749
    • /
    • 2016
  • We consider a time-division multiple-access relay channel (MARC), in which two source nodes (SNs) transmit data with different data rate to a destination node (DN) with the help of a relay node (RN) using network coding (NC). However, due to its asymmetric data rate, the RN cannot combine the received bits by XOR NC. In this paper, we compare with the problem of asymmetric data rates by using zero padding and hierarchical 16QAM.