• Title/Summary/Keyword: ($k,{\mu}$)'-almost Kenmotsu manifolds

Search Result 5, Processing Time 0.021 seconds

ON LOCALLY 𝜙-CONFORMALLY SYMMETRIC ALMOST KENMOTSU MANIFOLDS WITH NULLITY DISTRIBUTIONS

  • De, Uday Chand;Mandal, Krishanu
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.401-416
    • /
    • 2017
  • The aim of this paper is to investigate locally ${\phi}-conformally$ symmetric almost Kenmotsu manifolds with its characteristic vector field ${\xi}$ belonging to some nullity distributions. Also, we give an example of a 5-dimensional almost Kenmotsu manifold such that ${\xi}$ belongs to the $(k,\;{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$.

A STUDY ON (k, 𝜇)'-ALMOST KENMOTSU MANIFOLDS

  • Li, Jin;Liu, Ximin;Ning, Wenfeng
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.347-354
    • /
    • 2018
  • Let ${\mathcal{C}}$, ${\mathcal{M}}$, ${\mathcal{L}}$ be concircular curvature tensor, M-projective curvature tensor and conharmonic curvature tensor, respectively. We obtain that if a non-Kenmotsu ($k,{\mu}$)'-almost Kenmotsu manifold satisfies ${\mathcal{C}}{\cdot}{\mathcal{S}}=0$, ${\mathcal{R}}{\cdot}{\mathcal{M}}=0$ or ${\mathcal{R}}{\cdot}{\mathcal{L}}=0$, then it is locally isometric to the Riemannian product ${\mathds{H}}^{n+1}(-4){\times}{\mathds{R}}^n$.

GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS

  • Wang, Yaning
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1101-1114
    • /
    • 2016
  • Let ($M^{2n+1}$, ${\phi}$, ${\xi}$, ${\eta}$, g) be a (k, ${\mu}$)'-almost Kenmotsu manifold with k < -1 which admits a gradient Ricci almost soliton (g, f, ${\lambda}$), where ${\lambda}$ is the soliton function and f is the potential function. In this paper, it is proved that ${\lambda}$ is a constant and this implies that $M^{2n+1}$ is locally isometric to a rigid gradient Ricci soliton ${\mathbb{H}}^{n+1}(-4){\times}{\mathbb{R}}^n$, and the soliton is expanding with ${\lambda}=-4n$. Moreover, if a three dimensional Kenmotsu manifold admits a gradient Ricci almost soliton, then either it is of constant sectional curvature -1 or the potential vector field is pointwise colinear with the Reeb vector field.

SOME RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH GENERALIZED (k, µ)'-NULLITY DISTRIBUTION

  • De, Uday Chand;Ghosh, Gopal
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1289-1301
    • /
    • 2019
  • In the present paper, we prove that if there exists a second order parallel tensor on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$, then either the manifold is isometric to $H^{n+1}(-4){\times}{\mathbb{R}}^n$, or, the second order parallel tensor is a constant multiple of the associated metric tensor of $M^{2n+1}$ under certain restriction on k, ${\mu}$. Besides this, we study Ricci soliton on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution. Finally, we characterize such a manifold admitting generalized Ricci soliton.

On a Classification of Almost Kenmotsu Manifolds with Generalized (k, µ)'-nullity Distribution

  • Ghosh, Gopal;Majhi, Pradip;Chand De, Uday
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.137-148
    • /
    • 2018
  • In the present paper we prove that in an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}-nullity$ distribution the three conditions: (i) the Ricci tensor of $M^{2n+1}$ is of Codazzi type, (ii) the manifold $M^{2n+1}$ satisfies div C = 0, (iii) the manifold $M^{2n+1}$ is locally isometric to $H^{n+1}(-4){\times}R^n$, are equivalent. Also we prove that if the manifold satisfies the cyclic parallel Ricci tensor, then the manifold is locally isometric to $H^{n+1}(-4){\times}\mathbb{R}^n$.